On finite homogeneous metric spaces

Автор: Berestovskii Valerii N., Nikonorov Yurii G.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.24, 2022 года.

Бесплатный доступ

This survey is devoted to recently obtained results on finite homogeneous metric spaces. The main subject of discussion is the classification of regular and semiregular polytopes in Euclidean spaces by whether or not their vertex sets have the normal homogeneity property or the Clifford - Wolf homogeneity property. Every finite homogeneous metric subspace of an Euclidean space represents the vertex set of a compact convex polytope with the isometry group that is transitive on the set of vertices, moreover, all these vertices lie on some sphere. Consequently, the study of such subsets is closely related to the theory of convex polytopes in Euclidean spaces. The normal generalized homogeneity and the Clifford - Wolf homogeneity describe more stronger properties than the homogeneity. Therefore, it is natural to first check the presence of these properties for the vertex sets of regular and semiregular polytopes. In addition to the classification results, the paper contains a description of the main tools for the study of the relevant objects.

Еще

Archimedean solid, finite clifford - wolf homogeneous metric space, finite homogeneous metric space, finite normal homogeneous metric space, gosset polytope, platonic solid, regular polytope, semiregular polytope

Короткий адрес: https://sciup.org/143178749

IDR: 143178749   |   DOI: 10.46698/h7670-4977-9928-z

Список литературы On finite homogeneous metric spaces

  • Berestovskii, V. N. and Nikonorov, Yu. G. Finite Homogeneous Metric Spaces, Siberian Mathematical Journal, 2019, vol. 60, no. 5, pp. 757–773. DOI: 10.1134/S0037446619050021.
  • Berestovskii, V. N and Nikonorov, Yu. G. Killing Vector Fields of Constant Length on Riemannian Manifolds, Siberian Mathematical Journal, 2008, vol. 49, no. 3, pp. 395–407. DOI: 10.1007/s11202-008-0039-3.
  • Berestovskii, V. N and Nikonorov, Yu. G. On-Homogeneous Riemannian Manifolds, Differential Geometry and its Applications, 2008, vol. 26, no. 5, pp. 514–535. DOI: 10.1016/j.difgeo.2008.04.003.
  • Berestovskii, V. N. and Nikonorov, Yu. G. Clifford Wolf Homogeneous Riemannian Manifolds, Journal of Differential Geometry, 2009, vol. 82, no. 3, pp. 467–500. DOI: 10.4310/jdg/1251122544.
  • Berestovskii, V. N. and Nikonorov, Yu. G. Generalized Normal Homogeneous Riemannian Metrics on Spheres and Projective Spaces, Annals of Global Analysis and Geometry, 2014, vol. 45, no. 3, pp. 167–196. DOI: 10.1007/s10455-013-9393-x.
  • Berestovskii, V. N. and Nikonorov, Yu. G. Riemannian Manifolds and Homogeneous Geodesics, Springer Monographs in Mathematics, Cham, Springer, 2020. DOI: 10.1007/978-3-030-56658-6.
  • Berestovskii, V. N. and Nikonorov, Yu. G. Finite Homogeneous Subspaces of Euclidean Spaces, Siberian Advances in Mathematics, 2021, vol. 31, no. 3, pp. 155–176. DOI: 10.1134/S1055134421030019.
  • Berestovskii, V. N. and Nikonorov, Yu. G. Semiregular Gosset polytopes, Izvestiya: Mathematics, 2022, vol. 86, no. 4 (accepted). DOI:10.1070/IM9169.
  • Wolf, J. A. Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011. DOI: 10.1090/chel/372.
  • Berestovskii, V. N. and Guijarro, L. A Metric Characterization of Riemannian Submersions, Annals of Global Analysis and Geometry, 2000, vol. 18, no. 6, pp. 577–588. DOI: 10.1023/A:1006683922481
  • Berger, M. Geometry I. Universitext, Springer-Verlag, Berlin, 2009.
  • Coxeter, H. S. M. Regular Polytopes, 3d ed., New York, Dover, 1973.
  • Cromwell, P. R. Polyhedra, Cambridge, Cambridge Univ. Press, 1997.
  • Gr¨unbaum, B. Convex Polytopes, 2nd ed., Graduate Texts in Mathematics, 221, New York, Springer, 2003. DOI: 10.1007/978-1-4613-0019-9.
  • Smirnov, E. Yu. Reflection Groups and Regular Polyhedra, 2nd ed., MCCME, Moscow, 2018, 56 p. (in Russian).
  • Martini, H. A Hierarchical Classification of Euclidean Polytopes with Regularity Properties, Polytopes: Abstract, Convex and Computational, Proc. of the NATO Advanced Study Institute, Scarborough, Ontario, Canada, August 20–September 3, 1993, Eds. T. Bisztriczky et al. Dordrecht: Kluwer Academic Publishers. NATO ASI Ser., Ser. C, Math. Phys. Sci. 440, 1994, pp. 71–96. DOI: 10.1007/978-94-011-0924-6_4.
  • Four-Dimensional Euclidean Space. URL: http://eusebeia.dyndns.org/4d/index.
  • Schl¨afli, L. Theorie der Vielfachen Kontinuit¨at. Hrsg. im Auftrage der Denkschriften-Kommission der Schweizerischen Naturforschenden Gesellschaft von J.H. Graf. Z¨urich, Basel, Georg & Co, 1901.
  • Gosset, Th. On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger Math., 1900, vol. 29, pp. 43–48.
  • Elte, E. L. The Semiregular Polytopes of the Hyperspaces, 1912, Groningen, University of Groningen, URL: https://quod.lib.umich.edu/u/umhistmath/ABR2632.0001.001, 20.03.2021.
  • Blind, G. and Blind, R. The Semiregular Polytopes, Comment. Math. Helv., 1991, vol. 66, no. 1, pp. 150–154. DOI: 10.1007/BF02566640.
  • Dutour Sikiri´c, M. URL: http://mathieudutour.altervista.org/Regular/, 20.03.2021.
Еще
Статья научная