Огнестойкость монолитных железобетонных конструкций высокой жилой дом с основной структурной системы

Автор: Гравит Марина Викторовна, Назаров Михаил Александрович, Иванов Владимир Николаевич, Дмитриев Иван Игоревич

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 5 (90), 2020 года.

Бесплатный доступ

Выявлены основные требования строительных норм к пожарной безопасности несущих конструкций высотных зданий. Проведены теплопроводные и конструкционные расчеты железобетонного монолитного пилона и плиты перекрытия здания. Были реализованы три разные кривые пожара - стандартная и две реальные. Установлено, что для многоэтажного жилого дома пределы огнестойкости его конструкций следует определять исходя из современных данных о пожарной нагрузке в жилых помещениях. Это приведет к более рентабельной практике строительства.

Высотный жилой дом, огнестойкость, пожарная нагрузка, тепловой режим, требуемые пределы огнестойкости

Короткий адрес: https://readera.org/143172544

IDR: 143172544   |   DOI: 10.18720/CUBS.90.4

Список литературы Огнестойкость монолитных железобетонных конструкций высокой жилой дом с основной структурной системы

  • Kuznetsova, I.S. Gravit, M.V. Zimin, S.S. Serdobintsev, R.M. Normirovaniye ognestoykosti i identifikatsiya stroitelnykh konstruktsiy [fire resistance rating and identification of building structures]. Pozhary i chrezvychaynyye situatsii: predotvrashcheniye, likvidatsiya. 2019. 4. Pp. 28-38. (rus)
  • Roytman, V.M., Firsova, T.F. Neobosnovannoye zavysheniye trebovaniy norm i STU po predelam ognestoykosti ryada konstruktsiy vysotnykh zdaniy [unreasonable overestimation of the requirements of standards on the fire resistance limits of a number of structures of high-rise buildings]. Stroitelnyye normy. 2017. 2. Pp. 59-62. (rus)
  • Ivanov, V.N. Kompleksnyy podkhod k opredeleniyu trebuyemykh predelov ognestoykosti vysotnykh zhilykh zdaniy [an integrated approach to deterimining of required fire risistance limits of residential buildings]. Pozhary i chrezvychaynyye situatsii: predotvrashcheniye, likvidatsiya. 2018. 1. Pp. 28-38. 10.25257/fe.2018.1.28-38. (rus) DOI: 10.25257/fe.2018.1.28-38.(rus)
  • Molchadskiy, I.S. Pozhar v pomeshchenii [fire in the room]. Moskva: VNIIPO, 2005.317p. (rus)
  • Ivanov, V.N. Solntsev, N.D. Pozharnaya nagruzka v kvartirakh v vysotnykh zhilykh zdaniyakh [Fire load in apartments in high-rise residential buildings]. Pozhary i chrezvychaynyye situatsii: predotvrashcheniye, likvidatsiya. 2019. 4. Pp. 39-49. 10.25257/fe.2019.4.39-49. (rus) DOI: 10.25257/fe.2019.4.39-49.(rus)
  • Ma, Q., Guo, W. Discussion on the fire safety design of a high-rise building. 2012 International Symposium on Safety Science and Technology. 2012. 45(3). Pp. 685-689.
  • DOI: 10.1016/j.proeng.2012.08.223
  • Gravit, M., Lyulikov, V., Fatkullina, A. Possibilities of modern software complexes in simulation fire protection of constructions structures with Sofistik. MATEC Web of Conferences. 2018. 193. Pp. 0- 4.
  • DOI: 10.1051/matecconf/201819303026
  • Seung H. Kim, K.Y.H. Assessment of the finite-volume method and the discrete ordinate method for radiative heat transfer in a three-dimensional rectangular enclosure. Numerical Heat Transfer, Part B: Fundamentals. 1999. 35(1). Pp. 85-112.
  • DOI: 10.1080/104077999276027
  • Kuznetsova, I.S., Ryabchenkova, V.G. Protivopozharnyye normy - osnova pozharnoy bezopasnosti zdaniy i sooruzheniy [fire safety standards - the basis of fire safety of buildings and structures]. Promyshlennoye i grazhdanskoye stroitelstvo. 2017. 1. Pp. 35-38. (rus)
  • Belov, V.V., Semenov, K.V., Renev, I.A. Ognestoykost zhelezobetonnykh konstruktsiy: Modeli i metody rascheta [Fire Resistance of Reinforced Concrete Structures: Models and Calculation Methods]. Magazine of civil engineering. 2010. 6. Pp. 58-61. (rus)
  • Roytman, V.M., Pristupyuk, D.N. Osobennosti otsenki stoykosti zdaniy i sooruzheniy iz zhelezobetonnykh konstruktsiy pri kombinirovannykh osobykh vozdeystviyakh s uchastiyem pozhara [Features of assessing the durability of buildings and structures made of reinforced concrete structures under combined special effects involving fire]. Pozharovzryvobezopasnost. 2010. 19(7). Pp. 29-38. (rus)
  • Roytman, V.M. Normirovaniye zashchity vysotnykh zdaniy protiv progressiruyushchego razrusheniya pri kombinirovannykh osobykh vozdeystviyakh [Rationing of protection of high-rise buildings against progressive collapse under combined loads]. Sovremennoye promyshlennoye i grazhdanskoye stroitelstvo. 2008. 4(1). Pp. 11-19. (rus)
  • Xie, P., Abu, A., Spearpoint, M. Comparison of Existing Time-Equivalence Methods and the Minimum Load Capacity Method. Fire Science and Technology 2015. 17. Pp. 263-271.
  • DOI: 10.1007/978-981-10-0376-9_26
  • Tonicello, E., Vassart, O., Zanon, R., Franssen, J.M. Structural fire design and optimisation of a building. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE). 2012. 22(4). Pp. 541-544.
  • DOI: 10.2749/101686612X13363929517776
  • Gravit, M. V., Terekh, M.D., Lyulikov, V.A., Svintsov, S.A. Software packages for calculation of fire resistance of building construction, including fire protection. IOP Conference Series: Materials Science and Engineering. 2018. 456(1). Pp. 1-7.
  • DOI: 10.1088/1757-899X/456/1/012016
  • Schaumann, P., Kirsch, T. Protected Steel and Composite Connections. Journal of Structural Fire Engineering. 2015. 6(1). Pp. 41-48.
  • DOI: 10.1260/2040-2317.6.1.41
  • Kraus, P., Mensinger, M., Schaumann, P. Investigations of steel elements with intumescent coating connected to space-enclosing elements in fire, Fire tests on intumescent coated steel members. Applications of Structural Fire Engineering. 2015. 1(3). Pp. 56-76.
  • Bączkiewicz, J., Pajunen, S., Malaska, M., Heinisuo, M. Parametric study on temperature distribution of square hollow section joints. Journal of Constructional Steel Research. 2019. 160. Pp. 490-498.
  • DOI: 10.1016/j.jcsr.2019.05.049
  • Bączkiewicz, J., Malaska, M., Pajunen, S., Alanen, M., Heinisuo, M. Experimental study on axially loaded square hollow section T-joints under fire conditions. Fire Safety Journal. 2020. 114. Pp. 679-692.
  • DOI: 10.1016/j.firesaf.2020.102993
  • Ilyin, N.A., Panfilov, D.A., Komov, E.M. Estimation of Fire Resistance of a Building Structure by the Criterion of Heat-Insulating Ability. IOP Conference Series: Materials Science and Engineering. 2018. 463(4). Pp. 8-17.
  • DOI: 10.1088/1757-899X/463/4/042024
  • Zhang, G., Zhou, X., Zhu, G., Yan, S. A new accident analysis and investigation model for the complex building fire using numerical reconstruction. Case Studies in Thermal Engineering. 2019. 14. Pp. 153-178.
  • DOI: 10.1016/j.csite.2019.100426
  • Zhang, D., Zhang, J., Xiong, H., Cui, Z., Lu, D. Taking advantage of collective intelligence and BIM-based virtual reality in fire safety inspection for commercial and public buildings. Applied Sciences (Switzerland). 2019. 9(23). Pp. 156-178.
  • DOI: 10.3390/app9235068
  • Machado, L.R., Dutra, V.F.P., Maghous, S. A limit analysis approach to the stability assessment of reinforced concrete panels in fire conditions. Latin American Journal of Solids and Structures. 2020. 17(1). Pp. 543-559.
  • DOI: 10.1590/1679-78255662
  • Čolić, A., Pečur, I.B. Influence of Horizontal and Vertical Barriers on Fire Development for Ventilated Façades. Fire Technology. 2020. 56(4). Pp. 1725-1754.
  • DOI: 10.1007/s10694-020-00950-w
  • Khan, N., Ali, A.K., Tran, S.V.-T., Lee, D., Park, C. Visual language-aided construction fire safety planning approach in building information modeling. Applied Sciences (Switzerland). 2020. 10(5). Pp. 973-989.
  • DOI: 10.3390/app10051704
Еще
Статья научная