Numerical and analytical study on bending stiffness of sandwich panels at ambient and elevated temperatures

Автор: Pasternak Hartmut, Shoushtarian Mofrad Ashkan

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 1 (94), 2021 года.

Бесплатный доступ

This paper presents an investigation on the bending stiffness of sandwich panels at ambient and elevated temperatures. A finite element (FE) model is developed to verify simulations with experimental results, and then a parametric study at different temperatures is carried out. After that, an analytical study to determine the bending stiffness at room temperatures according to the current specification is conducted. Furthermore, the analytical solutions are developed to use at elevated temperatures. The objective of the current research is to compare the numerical and analytical results. It is observed that analytical solutions developed to evaluate the bending stiffness at elevated temperatures are conservative and reliable.

Еще

Sandwich panels, bending stiffness, analytical study, finite element analysis, parametric study, elevated temperatures

Короткий адрес: https://readera.org/143175783

IDR: 143175783   |   DOI: 10.4123/CUBS.94.5

Список литературы Numerical and analytical study on bending stiffness of sandwich panels at ambient and elevated temperatures

  • Steel cladding systems for stabilization of steel buildings in fire2020.
  • Rahimijonoush, A., Bayat, M. Experimental and numerical studies on the ballistic impact response of titanium sandwich panels with different facesheets thickness ratios. Thin-Walled Structures. 2020. 157. Pp. 107079. DOI:10.1016/j.tws.2020.107079.
  • The Behavior of Sandwich Structures of Isotropic and Composite Materia. .
  • Farrokhabadi, A., Ahmad Taghizadeh, S., Madadi, H., Norouzi, H., Ataei, A. Experimental and numerical analysis of novel multi-layer sandwich panels under three point bending load. Composite Structures. 2020. 250. Pp. 112631. DOI:10.1016/j.compstruct.2020.112631.
  • Noor, A.K., Burton, W.S., Bert, C.W. Computational models for sandwich panels and shells. Applied Mechanics Reviews. 1996. 49(3). Pp. 155–199. DOI:10.1115/1.3101923.
  • Colombo, I.G., Colombo, M., di Prisco, M., Pouyaei, F. Analytical and numerical prediction of the bending behaviour of textile reinforced concrete sandwich beams. Journal of Building Engineering. 2018. 17. Pp. 183–195. DOI:10.1016/j.jobe.2018.02.012.
  • Juntikka, R., Hallstrom, S. Shear Characterization of Sandwich Core Materials Using Four-point Bending. Journal of Sandwich Structures & Materials. 2007. 9(1). Pp. 67–94. DOI:10.1177/1099636207070574.
  • Huang, S., Samali, B., Li, J. Numerical and experimental investigations of a thermal break composite façade mullion under four-point bending. Journal of Building Engineering. 2021. 34. Pp. 101590. DOI:10.1016/j.jobe.2020.101590.
  • Elmushyakhi, A. Collapse mechanisms of out-of-plane preload composite sandwich beams under in-plane loading. Journal of Building Engineering. 2019. 26. Pp. 100875. DOI:10.1016/j.jobe.2019.100875.
  • Taghipoor, H., Eyvazian, A., Musharavati, F., Sebaey, T.A., Ghiaskar, A. Experimental investigation of the three-point bending properties of sandwich beams with polyurethane foam-filled lattice cores. Structures. 2020. 28. Pp. 424–432. DOI:10.1016/j.istruc.2020.08.082.
  • Kazemi, M. Experimental analysis of sandwich composite beams under three-point bending with an emphasis on the layering effects of foam core. Structures. 2021. 29. Pp. 383–391. DOI:10.1016/j.istruc.2020.11.048.
  • Mofrad, A.S., Shlychkova, D., Ciupack, Y., Pasternak, H. Evaluating bending stiffness and resistance of sandwich panels at elevated temperatures. DOI:10.3846/mbmst.2019.032.
  • Shoushtarian Mofrad, A., Pasternak, H. BEHAVIOUR OF MINERAL WOOL SANDWICH PANELS UNDER BENDING LOAD AT ROOM AND ELEVATED TEMPERATURES. Engineering Structures and Technologies. 2020. 12(1). Pp. 25–31. DOI:10.3846/est.2020.14046.
  • Srivaro, S., Matan, N., Lam, F. Stiffness and strength of oil palm wood core sandwich panel under center point bending. Materials and Design. 2015. 84. Pp. 154–162. DOI:10.1016/j.matdes.2015.06.097.
  • Daniel Ronald Joseph, J., Prabakar, J., Alagusundaramoorthy, P. Flexural behavior of precast concrete sandwich panels under different loading conditions such as punching and bending. Alexandria Engineering Journal. 2018. 57(1). Pp. 309–320. DOI:10.1016/j.aej.2016.11.016.
  • Michel Murillo, A., Tutikian, B.F., Christ, R., Silva, L.F.O., Maschen, M., Leandro Gómez, P., Oliveira, M.L.S. Analysis of the influence of thickness on fire reaction performance in polyisocyanurate core sandwich panels. Journal of Materials Research and Technology. 2020. 9(5). Pp. 9487–9497. DOI:10.1016/j.jmrt.2020.06.088.
  • Iyer, S.V., Chatterjee, R., Ramya, M., Suresh, E., Padmanabhan, K. A Comparative Study of the Three Point and Four Point Bending Behaviour of Rigid Foam Core Glass/Epoxy Face Sheet Sandwich Composites. Materials Today: Proceedings. 2018. 5(5). Pp. 12083–12090. DOI:10.1016/j.matpr.2018.02.184.
  • BS EN 14509:2013 - Self-supporting double skin metal faced insulating panels. Factory made products. Specifications. .
  • Cábová K., Arha T., Lišková N., W.F. Experimental investigation of stiffness in bending of sandwich panels at elevated temperatures. 2019. Pp. 1–6.
  • Dassault Systemes. ABAQUS2017.
  • Yan, J.B., Guan, H.N., Wang, T. Finite element analysis for flexural behaviours of SCS sandwich beams with novel enhanced C-channel connectors. Journal of Building Engineering. 2020. 31. Pp. 101439. DOI:10.1016/j.jobe.2020.101439.
  • Craveiro, H.D., Rodrigues, J.P.C., Santiago, A., Laím, L. Review of the high temperature mechanical and thermal properties of the steels used in cold formed steel structures - The case of the S280 Gd+Z steel. Thin-Walled Structures. 2016. 98. Pp. 154–168. DOI:10.1016/j.tws.2015.06.002.
  • EN 1993-1-2: Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design1993.
  • Gnip, I., Vėjelis, S., Keršulis, V., Vaitkus, S. Strength and deformability of mineral wool slabs under short-term compressive, tensile and shear loads. Construction and Building Materials. 2010. 24(11). Pp. 2124–2134. DOI:10.1016/j.conbuildmat.2010.04.047. URL: https://linkinghub.elsevier.com/retrieve/pii/S0950061810001686 (date of application: 5.03.2021).
  • Mihlayanlar, E., Dilmaç, Ş., Güner, A. Analysis of the effect of production process parameters and density of expanded polystyrene insulation boards on mechanical properties and thermal conductivity. Materials and Design. 2008. 29(2). Pp. 344–352. DOI:10.1016/j.matdes.2007.01.032.
  • Liu, F., Fu, F., Wang, Y., Liu, Q. Fire performance of non-load-bearing light-gauge slotted steel stud walls. Journal of Constructional Steel Research. 2017. 137. Pp. 228–241. DOI:10.1016/j.jcsr.2017.06.034.
  • Mao, W.J., Wang, W. Da, Xian, W. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures. 2020. 28. Pp. 1–16. DOI:10.1016/j.istruc.2020.08.043.
  • Li, Z., Chen, W., Hao, H. Numerical study of sandwich panel with a new bi-directional Load-Self-Cancelling (LSC) core under blast loading. Thin-Walled Structures. 2018. 127. Pp. 90–101. DOI:10.1016/j.tws.2018.02.003.
  • Wang, Y. jing, Zhang, Z. jia, Xue, X. min, Zhang, L. Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core. Thin-Walled Structures. 2019. 145. Pp. 106425. DOI:10.1016/j.tws.2019.106425.
  • Seo, J., Won, D., Kim, S., Kang, Y.J. Inelastic compressive buckling behavior of a cylindrical shell at elevated temperature: Case study. Journal of Building Engineering. 2019. 24. Pp. 100766. DOI:10.1016/j.jobe.2019.100766.
  • Pournaghshband, A., Afshan, S., Theofanous, M. Elevated temperature performance of restrained stainless steel beams. Structures. 2019. 22. Pp. 278–290. DOI:10.1016/j.istruc.2019.08.015.
  • Ding, R., Fan, S., Chen, G., Li, C., Du, E., Liu, C. Fire resistance design method for restrained stainless steel H-section columns under axial compression. Fire Safety Journal. 2019. 108. Pp. 102837. DOI:10.1016/j.firesaf.2019.102837.
  • Olteanu, I., Ciongradi, I.-P., Anechitei, M., Budescu, M. The ductile design concept for seismic actions in miscellaneous design codes. Buletinul Institutilui Politrchnic din Iaşi, Tomul LV (LIX), Fasc. 4. Secţia Constructii. Ărhitecturâ. 2009. Pp. 55–62.
Еще
Статья научная