Напряженно-деформированное состояние металлической пластины с трещинами при различных типах кривой деформации

Автор: Васильев Иван Анндреевич, Бортяков Данил Евгеньевич, Грачев Алексей Андреевич

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 7 (92), 2020 года.

Бесплатный доступ

Объектом исследования является влияние кривой деформации на напряженно-деформированное состояние стальных элементов в окрестности трещины. Методы. Исследование основано на конечно-элементном решении упругопластического состояния набора образцов. Образец представляет собой пластину толщиной 0 и 20 мм с двумя краевыми трещинами длиной от 10 до 40 мм. Результаты анализа получены для билинейной кривой деформации и степенной кривой деформации для различных параметров образца. Расхождение параметров напряженно-деформированного состояния в окрестности вершины трещины для различных функций деформации материала составляет от 0,3% до 4,7%. Эта оценка расхождения позволяет принять решение о выборе модели деформации материала для дальнейшего исследования состояния материала в окрестности трещины. График расхождения параметров напряженно-деформированного состояния показывает степень влияния типа кривой деформации в пределах различных параметров образца.

Еще

Кривая деформации, трещина, прочность, модель материала, метод конечных элементов, пластическое упрочнение, нелинейная механика разрушения

Короткий адрес: https://readera.org/143172556

IDR: 143172556   |   DOI: 10.18720/CUBS.92.5

Список литературы Напряженно-деформированное состояние металлической пластины с трещинами при различных типах кривой деформации

  • Rosenstein, I.M. Features of Brittle Destruction of Vertical Steel Welded Tanks. TERRITORIJA NEFTEGAS. 2007. 73(3). Pp. 53-57.
  • Mohseni, P., Solberg, J.K., Akselsen, O.M., Østby, E. Application of electron backscatter diffraction (EBSD) on facet crystallographic orientation studies in Arctic steels. Proceedings of the International Offshore and Polar Engineering Conference. 2011. Pp. 402-406.
  • Akimenko, O.Y. Avarii kranov iz za hrupkih razrusheniy metallokonstruktsiy. Eurasian Union of Scientists. 2015. 19(10-2). Pp. 75-76.
  • Fuller, R.W., Ehrgott, J.Q., Heard, W.F., Robert, S.D., Stinson, R.D., Solanki, K., Horstemeyer, M.F. Failure analysis of AISI 304 stainless steel shaft. Engineering Failure Analysis. 2008. 15(7). Pp. 835-846. DOI: 10.1016/j.engfailanal.2007.11.001
  • Bradt, R.C., Scott, A.N. Crack extension in refractories. Proceedings UNITECR 2011 Congress: 12th Biennial Worldwide Conference on Refractories - Refractories-Technology to Sustain the Global Environment. 2011. Pp. 856-863.
  • M. Krejsa L. Koubova J. Flodr J. Protivinsky Q. T. Nguyen. Probabilistic prediction of fatigue damage based on linear fracture mechanics. Frattura ed Integrità Strutturale. 2017. (39). Pp. 143- 159.
  • Livne, A., Bouchbinder, E., Fineberg, J. Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Physical Review Letters. 2008. 101(26).
  • DOI: 10.1103/PhysRevLett.101.264301
  • Cuenca, C.A., Sarzosa, D.F.B. Modeling ductile fracture using critical strain locus and softening law for a typical pressure vessel steel. International Journal of Pressure Vessels and Piping. 2020. 183.
  • DOI: 10.1016/j.ijpvp.2020.104081
  • Matvienko, Y.G. The simplified approach for estimating probabilistic safety factors in fracture mechanics. Engineering Failure Analysis. 2020. 117.
  • DOI: 10.1016/j.engfailanal.2020.104814
  • Matvienko, Y.G. The effect of crack-tip constraint in some problems of fracture mechanics. Engineering Failure Analysis. 2020. 110.
  • DOI: 10.1016/j.engfailanal.2020.104413
  • Wang, X. Two-parameter characterization of elastic-plastic crack front fields: Surface cracked plates under uniaxial and biaxial bending. Engineering Fracture Mechanics. 2012.
  • DOI: 10.1016/j.engfracmech.2012.07.014
  • Park, J., Lee, K., Sung, H., Kim, Y.J., Kim, S.K., Kim, S. J-integral Fracture Toughness of High- Mn Steels at Room and Cryogenic Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2019.
  • DOI: 10.1007/s11661-019-05200-5
  • Neimitz, A., Graba, M., Gałkiewicz, J. An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. Engineering Fracture Mechanics. 2007. 74(8). Pp. 1308-1322.
  • DOI: 10.1016/j.engfracmech.2006.07.015
  • Matvienko, Y.G. Kriterii osredneniia napriazhenii V.V. Novozhilova i diagrammy treshchinostoikosti. Trudy TcNII im. akad. A.N.Krylova. 2010. 337(53.1). Pp. 93-98. URL: https://elibrary.ru/item.asp?id=28368187.
  • Sibilev, A.V., Mishin, V.M. Assignment cold brittleness criteria of steel samples based on the criteria of local destruction. Fundamental research. 2013. (4). Pp. 843-847. URL: https://www.fundamental-research.ru/en/article/view?id=31283.
  • Sokolov, S.A., Grachev, A.A. Local criterion for strength of elements of steelwork. International Review of Mechanical Engineering. 2018. 12(5). Pp. 448-453.
  • DOI: 10.15866/ireme.v12i5.14582
  • Sokolov, S.A., Grachev, A.A., Vasil'ev, I.A. Strength of Cracked Steel Structural Components at Negative Temperatures. Russian Engineering Research. 2020.
  • DOI: 10.3103/S1068798X20020203
  • Sokolov, S., Vasilyev, I., Manzhula, K. The strength of welded structures at low climatic temperatures. MATEC Web of Conferences. 2018.
  • DOI: 10.1051/matecconf/201824508001
  • Shtayura, S.T. Influence of stiffness of the stressed state under biaxial loading of tubular specimens on the strength characteristics of 20 steel in hydrogen. Materials Science. 2015. 51(2). Pp. 254-260.
  • DOI: 10.1007/s11003-015-9837-5
  • Karkhin, V.A., Kopel'man, L.A. STRESS CONCENTRATION IN BUTT WELDS. Weld Prod. 1976. 23(2). Pp. 8-9.
  • Dmitriev, A., Novozhilov, Y., Mikhalyuk, D., Lalin, V. Calibration and Validation of the Menetrey- Willam Constitutive Model for Concrete; 2020; Construction of Unique Buildings and Structures. 2020. 88. Pp. 8804.
  • DOI: 10.18720/CUBS.88.4
  • Belytschko, T., Liu, W., Moran, B. Nonlinear finite elements for continua and structures. Choice Reviews Online. 2001. 38(07). Pp. 38-3926-38-3926. 10.5860/CHOICE.38-3926. URL: http://choicereviews.org/review/10.5860/CHOICE.38-3926.
  • DOI: 10.5860/CHOICE.38-3926.URL
  • Zienkiewicz, O., Taylor, R., Zhu, J.Z. The Finite Element Method: its Basis and Fundamentals. 7th ed. Elsevier Ltd, 2013. 714 p.
  • ISBN: 9781856176330
  • Fries, T.P., Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering. 2010. 84(3). Pp. 253-304.
  • DOI: 10.1002/nme.2914
  • Lalin, V. V., Dmitriev, A.N., Diakov, S.F. Nonlinear deformation and stability of geometrically exact elastic arches. Magazine of Civil Engineering. 2019. 89(5). Pp. 39-51.
  • DOI: 10.18720/MCE.89.4
  • Lalin, V. V., Yavarov, A. V., Orlova, E.S., Gulov, A.R. Application of the Finite Element Method for the Solution of Stability Problems of the Timoshenko Beam with Exact Shape Functions. Power Technology and Engineering. 2019. 53(4). Pp. 449-454. 10.1007/s10749-019- 01098-6.
  • DOI: 10.1007/s10749-019-01098-6
  • Lalin, V., Nenashev, V., Utimisheva, I., Orlovich, R. Buckling of Cantilever Beam Loaded by Potential Following Moment. Lecture Notes in Civil Engineering. 70. Springer, 2020. Pp. 643- 652.
  • Lalin, V.V., Kushova, D.A. New results in dynamics stability problems of elastic rods. Applied Mechanics and Materials. 2014. 617. Pp. 181-186.
  • DOI: 10.4028/www.scientific.net/AMM.617.181
  • Lalin, V. V., Beliaev, M.O. Bending of geometrically nonlinear cantilever beam. Results obtained by Cosserat - Timoshenko and Kirchhoff's rod theories. Magazine of Civil Engineering. 2015. 53(1).
  • DOI: 10.5862/MCE.53.5
  • Novozhilov, Y. V, Dmitriev, A.N., Mikhaluk, D.S., Chernukha, N.A., Feoktistova, L.Y., Volkodav, I.A. Aircraft NPP Impact Simulation Methodology. 16th International LS-DYNA® Users Conference. 2020. Pp. 1-14.
  • Novozhilov, Y.V., Mikhaluk, D.S., Feoktistova, L.Y. Calculation of aircraft impact load on the NPP nuclear island buildings. Computational Continuum Mechanics. 2018. 11(3). Pp. 288-301. 10.7242/1999-6691/2018.11.3.22. URL: http://journal.permsc.ru/index.php/ccm/article/view/CCMv11n3a22 (date of application: 21.09.2020).
  • DOI: 10.7242/1999-6691/2018.11.3.22.URL
  • Gertsik, S.M., Novozhilov, Y.V. NUMERICAL SIMULATION OF A MASSIVE IMPACTOR FALLING ONTO A REINFORCED CONCRETE BEAM. Problems of Strength and Plasticity. 2020. 82(1). Pp. 5-15. 10.32326/1814-9146-2020-82-1-5-15. URL: http://ppp.mech.unn.ru/index.php/ppp/article/view/553 (date of application: 21.09.2020).
  • DOI: 10.32326/1814-9146-2020-82-1-5-15.URL
  • Terranova, B., Whittaker, A., Schwer, L. Simulation of wind-borne missile impact using Lagrangian and Smooth Particle Hydrodynamics formulations. International Journal of Impact Engineering. 2018. 117. Pp. 1-12.
  • DOI: 10.1016/j.ijimpeng.2018.02.010
  • Attaway, S.W., Heinstein, M.W., Swegle, J.W. Coupling of smooth particle hydrodynamics with the finite element method. Nuclear Engineering and Design. 1994. 150(2-3). Pp. 199-205. 10.1016/0029-5493(94)90136-8. URL: https://linkinghub.elsevier.com/retrieve/pii/0029549394901368 (date of application: 10.06.2020).
  • DOI: 10.1016/0029-5493(94)90136-8.URL
  • Wu, H., Peng, Y., Kong, X. Notes on projectile impact analyses. Singapore, Springe Nature, 2019. 1-370 p.
  • ISBN: 9789811332531
  • Gingold, R.A., Monaghan, J.J. Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of Computational Physics. 1982. 46(3). Pp. 429-453. 10.1016/0021-9991(82)90025-0. URL: https://linkinghub.elsevier.com/retrieve/pii/0021999182900250 (date of application: 10.06.2020).
  • DOI: 10.1016/0021-9991(82)90025-0.URL
  • Monaghan, J.J. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics. 1992. 30(1). Pp. 543-574. 10.1146/annurev.aa.30.090192.002551. URL: http://www.annualreviews.org/doi/10.1146/annurev.aa.30.090192.002551 (date of application: 10.06.2020).
  • DOI: 10.1146/annurev.aa.30.090192.002551.URL
  • Gingold, R.A., Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical Stars. Monthly Notices of the Royal Astronomical Society. 1977. 189. Pp. 375- 389.
  • DOI: 10.16309/j.cnki.issn.1007-1776.2003.03.004
  • Lucy, L.B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal. 1977. 82(12). Pp. 1013-1024. 10.1007/s00769-003-0757-y. URL: http://link.springer.com/10.1007/s00769-003-0757-y.
  • DOI: 10.1007/s00769-003-0757-y.URL
  • Monaghan, J.J., Gingold, R.A. Shock simulation by the particle method SPH. Journal of Computational Physics. 1983. 52(2). Pp. 374-389.
  • DOI: 10.1016/0021-9991(83)90036-0
  • Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A. High Strain Lagrangian Hydrodynamics. Journal of Computational Physics. 1993. 109(1). Pp. 67-75. 10.1006/jcph.1993.1199. URL: https://linkinghub.elsevier.com/retrieve/pii/S002199918371199X.
  • DOI: 10.1006/jcph.1993.1199.URL
  • Liu, G.R., Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing Co. Pte Ltd, 2003. 449 p.
  • Li, S., Liu, W.K. Meshfree Particle Methods. Springer-Verlag Berlin Heidelberg, 2007. 508 p.
  • ISBN: 9783540222569
  • Schwer, L.E. Aluminium plate perforation: a comparative case study using Lagrange with erosion, multi-material ALE, and smooth particle hydrodynamics. 7th European LS-DYNA Conference. 2009.
  • Zhang, Z., Qiang, H., Gao, W. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Engineering Structures. 2011. 33. Pp. 255-264. 10.1016/j.engstruct.2010.10.020. URL: www.elsevier.com/locate/engstruct (date of application: 10.06.2020).
  • DOI: 10.1016/j.engstruct.2010.10.020.URL
  • Fang, Q., Wu, H. Concrete Structures Under Projectile Impact. Singapore, Springer Singapore, 2017. 577 p. 978-981-10-3619-4.
  • ISBN: 9789811036194
  • Hanchak, S.J., Forrestal, M.J., Young, E.R., Ehrgott, J.Q. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths. International Journal of Impact Engineering. 1992. 12(1). Pp. 1-7.
  • DOI: 10.1016/0734-743X(92)90282-X
  • Hallquist, J. LS-DYNA theory manual. Livermore, Livermore Software Technology Corporation, 2007. 884 p.
  • ISBN: 9254492507
  • De Vuyst, T., Vignjevic, R., Campbell, J.C. Coupling between meshless and finite element methods. International Journal of Impact Engineering. 2005. 31(8). Pp. 1054-1064.
  • DOI: 10.1016/j.ijimpeng.2004.04.017
  • Wu, Y., Magallanes, J.M., Choi, H.-J., Crawford, J.E. Evolutionarily Coupled Finite-Element Mesh-Free Formulation for Modeling Concrete Behaviors under Blast and Impact Loadings. Journal of Engineering Mechanics. 2013. 139(4). Pp. 525-536. 10.1061/(ASCE)EM.1943- 7889.0000497. URL: http://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0000497 (date of application: 10.06.2020).
  • DOI: 10.1061/(ASCE)EM.1943-7889.0000497.URL
  • Wu, J., Wu, H., Tan, H.W.A., Chew, S.H. Multi-layer Pavement System under Blast Load. Singapore, Springer Singapore, 2018. 239 p. 978-981-10-5000-8.
  • ISBN: 9789811050008
  • Murray, Y. Users Manual for LS-DYNA Concrete Material Model 159. McLean, 2007. 77 p.
  • Murray, Y., Abu-Odeh, A., Bligh, R. Evaluation of LS-DYNA Concrete Material Model 159. McLean, 2007. 206 p.
  • Wei, J., Li, J., Wu, C. An experimental and numerical study of reinforced conventional concrete and ultra-high performance concrete columns under lateral impact loads. 2019. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.engstruct.2019.109822
  • Weng, Y.-H., Qian, K., Fu, F., Fang, Q. Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse. Journal of Building Engineering. 2020. 29. Pp. 101109. 10.1016/j.jobe.2019.101109. URL: 10.1016/j.jobe.2019.101109 (date of application: 26.07.2020).
  • DOI: 10.1016/j.jobe.2019.101109.URL
  • Saini, D., Shafei, B. Concrete constitutive models for low velocity impact simulations. 2019. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.ijimpeng.2019.103329
  • Levi-Hevroni, D., Kochavi, E., Kofman, B., Gruntman, S., Sadot, O. Experimental and numerical investigation on the dynamic increase factor of tensile strength in concrete. 2017. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.ijimpeng.2017.12.006
  • Jiang, H., Zhao, J. Calibration of the continuous surface cap model for concrete. 2015. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.finel.2014.12.002
  • EN1992-1-1. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standartization, 2004. 227 p.
  • EN 12390-3:2009 Testing Hardened Concrete. - Part 3: Compressive Strength of Test Specimens. European Committee for Standartization, 2009. 22 p.
Еще
Статья научная