Nanocomposite organomineral hybrid materials. Part iii

Автор: Kudryavtsev Pavel Gennadievich, Figovsky Oleg Lvovich

Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild

Рубрика: Международный опыт

Статья в выпуске: 3 т.8, 2016 года.

Бесплатный доступ

The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

Еще

Nanocomposites, sol-gel synthesis, soluble silicates, metal alkoxide, sols, gels, aerogels, packing of spherical nanoparticles, packing of fibrous nanoparticles

Короткий адрес: https://sciup.org/14265796

IDR: 14265796   |   DOI: 10.15828/2075-8545-2016-8-3-16-49

Список литературы Nanocomposite organomineral hybrid materials. Part iii

  • Kerber M.L. Polymer composite materials. Structure. Properties. Technology. St.-Petersburg, Profession, (2008), 560 p.
  • Friedrich K, Fakirov S., Zhang Z. Polymer composites: from nano-to-macro-scale, (2005), Springer.
  • Kobayashi N. Introduction to nanotechnology. Moscow, BINOM, (2005), 134 p.
  • Chujo Y., Saegusa T. Advances in Polymer Science, (1992), Vol. 100, pp. 11-29.
  • Kickelbick, G. Introduction to Hybrid Materials, in Hybrid Materials: Synthesis, Characterization, and Applications (ed G. Kickelbick), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, (2007). DOI: DOI: 10.1002/9783527610495.ch1
  • Pomogailo A.D. Hybrid polymer-inorganic nanocomposites. Russian Chemical Reviews, (2000), Vol. 69. № 1. p. 53-80.
  • Pomogailo A.D., Rosenberg A.S., Uflyand I.E. Metal nanoparticles in the polymer, Moscow, Chemistry, (2000).
  • Guglielmi M., Kickelbick G, Martucci A. (Eds.), Sol-Gel Nanocomposites, Series: Advances in Sol-Gel Derived Materials and Technologies, (2014), IX, 227 p.
  • Hench L.L., West J.K. The sol-gel process, Chem. Rev., (1990), 90, 1, pp. 33-72, DOI: DOI: 10.1021/cr00099a003
  • Sergeev G.B. Nanochemistry, Moscow, Publisher MSU, (2003).
  • Blesa MA, Candal R.J. Powder production from aqueous solutions for ceramics application. Miguel A. Blesa et al., Key Engineering Materials, (1991), 58, 107 128 DOI: 10.4028/www.scientific.net/KEM.58.107
  • Hirano S. Hydrothermal processing of ceramics. Am. Ceram. Soc. Bull., (1987), 66, 9, pp.1342-1344
  • Somiya S., Roy R. Hydrothermal synthesis of fine oxide powders. Bull. Mater. Sci., (2000), 23, 6, p.453-460 DOI: 10.1007/BF02903883
  • Lakeman C.D.E., Payne DA. Sol-gel processing of electrical and magnetic ceramics. Mater Chem Phys, (1994), 38, 4, p. 305-324. D01:10.1016/0254-0584(94)90207-0.
  • Livage J., Beteille F., Roux C, Chatry M., Davidson P. Sol-gel synthesis of oxide Materials. Acta. Mater., (1998), 46, 3, pp.743-750. D01:10.1016/S1359-6454(97)00255-3.
  • Komarneni S., Abothu I.R., Rao A.V.P. Sol-gel processing of some electroceramic powders. J Sol-Gel Sci. Technol., (1999), 15, 3, pp. 263-270.
  • Lee G.R., Crayston JA. Sol-gel processing of transition-metal alkoxides for electronics. Adv. Mater. (Weinheim, Fed Repub Ger), (1993), 5, 6, (1993), 434-442 DOI: 10.1002/adma.19930050604
  • Sakka S. Sol-gel coating films for optical and electronic application. Struct Bonding (Berlin) 85(Optical and electronic phenomena in sol-gel glasses and modern application), (1996), 1-49.
  • Levy D, Esquivias L. Sol-gel processing of optical and electro optical materials. Adv Mater(Weinheim,Ger),(1995),7,2,pp.120-129. D01:10.1002/adma.19950070204.
  • Brinker C.J., Scherer G.W. Sol-gel science: the physics and chemistry of sol-gel processing. Access online via Elsevier, (1990).
  • Dimitriev Y. Ivanova Y. Iordanova R. History of sol-gel science and technology (review). J. Univ. Chem. Technol. Metall., (2008), 43, pp.181-192.
  • Livage J., Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides. Prog. Solid State., (1988), 18, 4, pp. 259-341. D0I:10.1016/0079-6786(88)90005-2.
  • Nemeth S. Processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. CRC Press, Boca Raton, (2010), pp. 147-204.
  • Glaubitt W, Loebmann P. Antireflective coatings prepared by sol-gel processing: principles and applications. J Eur Ceram Soc., (2012), 32, 11, p. 2995-2999. D0I:10.1016/j.jeurceramsoc.2012.02.032.
  • Cushing B.L, Kolesnichenko V.L, O'Connor C.J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. (Washington, DC, U S), (2004), 104, 9, pp. 3893-3946. D0I:10.1021/cr030027b.
  • NiederbergerM. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res., (2007), 40(9):793-800. D0I:10.1021/ar600035e.
  • Sanchez C, Rozes L, Ribot F, Laberty-Robert C., Grosso D, Sassoye C, Boissiere C., Nicole L. «Chimie douce»: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. C.R.Chim., (2010), 13, 1-2, pp. 3-39. D0I:10.1016/j.crci.2009.06.001.
  • Kickelbick G. (Editor). Hybrid Materials: Synthesis, Characterization, and Applications, (2007), Wiley, 516 p.
  • Amphlett C.B. Inorganic ion exchangers, Elsevier, Amsterdam, (1964).
  • Tanabe K. Solid Acids and basis. Their catalytic properties, Kodansha, Tokyo, (1970).
  • Smith M.B. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition, (2013), 2080 p.
  • Pomogailo A.D. Polymer sol-gel synthesis of hybrid nanocomposites, Colloid Journal. (2005), Vol. 67. № 6. pp. 658-677.
  • Hay J.N., Raval H.M. Synthesis of organic-inorganic hybrids via the nonhydro-lytic solgel process. Chem. Mater., (2001), 13(10), pp. 3396-3403. D0I:10.1021/cm011024n.
  • Loy DA, Shea K.J. Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem Rev (Washington, D C), (1995), 95(5), pp. 1431-1442. D0I:10.1021/cr00037a013.
  • Aegerter MA. Leventis N. Koebel M.M. eds. Aerogels handbook, Springer, (2011), 965 p.
  • Andrianov KA. Organosilicon compounds. Moscow, State scientific -technical publishing the chemical literature (1955).
  • Hay J.N., Adeogun M., Raval H. «Sol-gel Hybrids: Hydrolyze or Not». (2000).
  • Acosta S., Arnal P., Corriu R.J.P., Leclercq D., Mutin P.H. and Vioux A.J. Mater. Res. Soc. Symp. Proc., (1994), Vol. 43, P. 346.
  • Corriu R.J.P., Leclercq D., Lefbvre P., Mutin P.H., Vioux A. Preparation of monolithic gels from silicon halides by a non-hydrolytic sol-gel process, J. Non-Cryst. Solids, Vol. 146, (1992), P. 301-303.
  • Andrianainarivelo M., Corriu R.J.P., Leclercq D., Mutin P.H., Vioux A. Nonhydro-lytic Sol-Gel process: Aluminium and zirconium titanate gels Journal of Sol-Gel Science and Technology, (1997), Vol. 8, 1-3, pp. 89-93.
  • Anil K.P.S., Alias J.P., Date S.K. Effect of compositional homogeneity on the magnetic properties of La07Ca03Mn03. J. Mater. Chem., (1998), 8, 1219-1223, DOI: 10.1039/A708235E
  • Hay J.N., Raval H.M. Preparation of Inorganic Oxides via a Non-Hydrolytic Sol-Gel Route, Journal of Sol-Gel Science and Technology, (1998), Vol. 13, Issue 1-3, pp. 109-112.
  • Arnal P., Corriu R.J.P., Leclercq D., Mutin P.H. and Vioux A. Preparation of ana-tase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods. J. Mater. Chem., (1996), 6, p. 1925-1932, DOI: 10.1039/JM9960601925
  • Guenther E., Jansen M. J. Chem. Mater., (1995), Vol. 7, P. 2110.
  • Hay J., Raval H., Porter D. A non-hydrolytic route to organically-modified silica. Chem. Commun., (1999), 81-82, DOI: 10.1039/A807491G
  • Park M., Commarneni S., Choi J. Effect of substituted alkyl groups on textural properties of ORMOSILs. Journal of Materials Science, (1998), Vol. 33, 15, pp.3817-3821.
  • Schmidt Р. New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids, (1985), Vol. 73, P. 681-691 DOI: 10.1016/0022-3093(85)90388-6
  • Iwamoto T, Mackenzie J.D. Hard ormosils prepared with ultrasonic irradiation. J. Sol-Gel Science and Technology, (1995), Vol. 4, 2, pp. 141-150.
  • Tutorskiy IA, Sklovsky M.D. Interfacial phenomena in polymer composites. Moscow, TsNIITEneftehim, (1994), 100 p.
  • Ayler I. Chemistry of silica, Vol. 1, M.: World (1982), 416 p.
  • Hwang, S.-W., Jung, H.-H., Hyun, S.-H, Ahn, Y.-S. Effective preparation of crack-free silica aerogels via ambient drying, J. Sol-Gel Sci. Technol. (2007), 41, 139-146
  • Figovsky O., Beilin D. Advanced Polymer Concretes and Compounds@CRC Press, Tailor &Francis Group, (2013), 245 p.
  • Korneev V.I., Danilov V.V. Soluble and waterglass. St. Petersburg: Stroyizdat, St. Petersburg., (1996).
  • Kudryavtsev P.G. Alkoxides of chemical elements -Promising class of chemical compounds which are raw materials for HI-TECH industries, Journal «Scientific Israel -Technological Advantages», Vol. 16, no. 2, (2014), p. 147-170.
  • Grigoriev P.N., Matveev MA. Water-glass (production, properties and application) -M., (1956).
  • Kudryavtsev P.G., Volhin V.V. The sol-gel processes and some of its technological applications, sol-gel processes produce inorganic materials meas. Conf. seminar, Perm (1991), p. 3-5.
  • Christophlienk P. Glastechn. Ber., (1985), 85, N 11, S. 308.
  • Vail J.G. Soluble Silicates. Reinhold, New York. (1952), V. 1, 2.
  • Hoebbel D., Garzo G., Engelhardt G., Ebert R., Lippmaa E. and Alla M. Uber die Silica-tanionenkonstitution in Tetraethylammoniumsilicaten und ihren waBrigen Losun-gen. Z. anorg. allg. Chem., (1980), 465: 15-33 DOI: 10.1002/zaac.19804650103
  • Hoebbel D., Vargha A., Engelhardt G. and Ujszaszy K. Zum Anionenaufbau von Tetra-n-butylammoniumsilicaten und ihren waBrigen Losungen. Z. anorg. allg. Chem., (1984), 509: 85-94 DOI: 10.1002/zaac.19845090209
  • Schulze B., Tisher V., Ettel V.P. Mortars and concretes to not cementitious binders. M.: Stroiizdat (1990), 240.
  • Nyanyushkin Y.I., Levshin A.M., Epstein V.S. Corrosion protection in the chemical industry, M., NIITEKHIM, (1976).
  • Nyanyushkin Y.I., Anatsky F.I. Corrosion protection, M., NIITEKHIM, (1983).
  • Borsuk PA., Lyass A.M. Liquid self-hardening mixture. M.: Mashiioctroenie, (1979), 255 p.
  • Petrakov B.N., Lopatkin A.V. Cement (1993), № 9, p. 38-39.
  • Kryvenko P.V., Blazhis A.R., Rostov G.S. Cement (1993), № 1, P. 27-29.
  • Kudryavtsev P.G., Nedugov A.N., Ryabov VA, Volkova MA., Kaisin A.V., Koro-taev I.M., Korkin A.M. RF patent 2388693, Method for producing silico flokulyan-ta-coagulant and method of cleaning with the help of water (2008).
  • Melihov I.V., Merkulov M.S. Co-crystallization, Nauka, Moscow, (1975).
  • Pomogailo A.D. Synthesis and Intercalation Chemistry of Hybrid Organo-Inorgan-ic Nanocomposites, Polymer. (2006), vol. 48. № 7. S. 1317-1351.
  • Porter M.R. Handbook of Surfactants. Blackie, Glasgow (UK), (1994).
  • Figovskiy O.L., Beilin DA., Ponomarev A.N. Successful application of nanotechnology in construction materials, Nanobuild, v. 3, (2012), p. 6-21.
  • HuusingN., Schubert U. Aerogels. In: Ullmann's Encyclopedia of Industrial Chemistry, 6th edn. Wiley, (2002).
  • Rodembusch F.S., Campo L.F., Stefani V., Rigacci A. The first silica aerogel fluorescent by excited state intramolecular proton transfer mechanism (ESIPT). J Mater Chem., (2005), 15, pp. 1537-1541.
  • Smith D.M., Deshpande R., Brinker C.J. Preparation of low-density aerogels at ambient pressure. Mat Res Soc Symp Proc., (1992) Vol. 271, 567-572.
  • Kuhn J., Gleissner T., Aruini-Schuster M.C., Korder S., Fricke J. Integration of mineral powders into SiO2 aerogels. J. Non-Cryst. Solids, (1995), 186, pp. 291295.
  • Santos A., Ajbary M., Toldeo-Fernandez JA., Morales-Florez V., Kherbeche A., Es-quivias L. Reactivity of CO2 traps in aerogel-wollastonite composite. J Sol Gel Sci Technol. (2008), 48, pp. 224-230.
  • Kulkarni M.M., Bandyopadhyaya R., Bhattacharya B., Sharma A. Microstructural and mechanical properties of silica-PEPEG polymer composite xerogels. Acta Ma-terialia, (2006), 54, pp. 5231-5240.
  • Vicarini MA, Nicolaon GA., Teichner S.J. Proprie'tes texturales d'aerogels mi-neraux mixte prepares par hydrolyse simultanee de deux alcoolates metalliques en solution dans un milieu organique. Bulletin de la Societe Chimique de France, (1970), 10, pp. 3384-3387.
  • Cao S., Yao N., Yeung K.L. Synthesis of freestanding silica and titania-silica aerogels with ordered and disordered mesopores. J Sol-Gel Sci and Tech., (2008), 46, pp. 323-333.
  • Mosquera M.J, de los Santos D.M., Valdez-Castro L., Esquivias L. (2008) New route for producing crack-free xerogels: obtaining uniform pore size. J Non-Cryst Solids 354:645-650.
  • Meador MA., Fabrizio E.F., Ilhan F., Dass A., Zhang G., Vassilarias P., Johnston J.C., Leventis N. Cross-linking amine-modified silica aerogels with epoxies: mechanically strong light-wight prorous materials. J. Chem. Mater., (2005), 17, pp. 1085-1098.
  • Patwardhan S.V., Mukherjee N., Durstock M.F., Chiang L.Y., Clarson S.J. Synthesis of C-60 fuellerenesilica hybrid nanostructures. Journal of Inorganic and Or-ganometallic Polymers, (2002), 12, pp. 49-55.
  • Morris CA., Rolison D.R., Swider-Lyons K.E., Osburn-Atkinson E.J., Merzbach-er C.I. Modifying nanoscale silica with itself: a method to control surface properties of silica aerogels independently of bulk structure. J. Non-Cryst. Solids, (2001), 285, pp. 29-36.
  • Wallace J.M., Rice J.K., Pietron J.J., Stroud R.M., Long J.W., Rolison D.R. Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity. Nano Lett., (2003), 3, pp. 1463-1467.
  • Anderson M.L., Rolison D.R., Merzbacher C.I. Composite aerogels for sensing applications. Proc. SPIE. (1999), 3790, pp. 38-42.
  • Boday D.J. Loy DA. Poly aniline nanofiber/silica aerogel composites with improved strength and sensor applications. Polymer Preprints, (2009), 50, p. 282.
  • Aegerter MA., Leventis N., Koebel M.M. Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, (2011), 956 p.
  • Cooper P.W. Explosives Engineering. New York: Wiley-VCH (1996).
  • Maxwell Garnett J.C. Colors in metal glasses and in metallic films. Philosophical Transactions Royal Society of London, (1904), A203, pp. 385-420.
  • Cherenkov PA. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. (1937). 52. Pp. 378-379.
  • Carlson P. Aerogel Cherenkov counters: construction principles and applications. Nucl. Instrum. Methods Phys. Res., (1986), Sect A248, pp. 110-117.
  • Gunter P. Aerogel Cherenkov counters at DESY. Nucl Instr. and Meth., (1986), A248, pp. 118-129.
  • Woignier T., Phalippou J. and Prassas M. Glasses from aerogels part 2: The aerogel glass transformation. J. Mater. Sci., (1990), 25 pp. 3118-3126.
  • Zanotto E.D. The formation of unusual glasses by sol-gel processing. J. Non-Cryst. Solids, (1992), 147&148, pp. 820-823.
  • Woignier T., Reynes J., Phalippou J., Dussossoy J.L., Jacquet-Francillon N. Sintered silica aerogel: a host matrix for long live nuclear wastes. J. Non-Cryst. Solids, (1998), 225, pp. 353-357.
  • Gash A.E., Satcher J.H., Simpson R.L. Direct preparation of nanostructured energetic materials using sol-gel methods. In Miziolek, AW, Karna Sp, Mauro JM, Vaia Ra (Eds.) Defense applications of nanomateirals. Washington DC: American Chemical Society, (2002).
  • Dagani R. Putting the nano into composites. Chemical & Engineering News, (1999), 77, pp. 25-31.
  • Wickersham C.E., Poole J.E. Explosive Crystallization in Zr/Si Multilayers. J. Vac. Sci. Technol. A, (1988), 6, 3, pp. 1699-1702.
  • Bockman B.S., Pantoya M.L., Son S.F., Asay B.W., Mang J.T. Combustion velocities and propagation mechanisms of metastable interstitial composites. Journal of Applied Physics, (2005), 98, 6, pp. 064903/1-064903/7.
  • Umbrajkar S.M., Schoenitz M., Dreizin E.L. Structural refinement in Al-MoO3 nanocomposites prepared by arrested reactive milling. Thadhani N., Armstrong R.W., Gash A.E., Wilson W.H. Materials Research Society Symposium Proceedings Vol. 896; Multifunctional Energetic Materials. Warrendale PA (USA): Material Research Society (2005).
  • Son S.F., Yetter YA., Yang V. Introduction: Nanoscale energetic materials. Journal of Power and Propulsion and Power, (2007), 23, 4, pp. 643-644.
  • Aumann C.E., Skofronick G.L., Martin JA. Oxidation behavior of aluminum nanopowders. J. Vac. Sci. Technol. B. (1993), 13, 2, pp. 1178-1183.
  • Armstrong R.W., Coffey C.S., DeVost V.F., Elban W.L. Crystal size dependences for the impact initiation of cyclotrimethylenetrimitramine explosive. J. Appl. Phys., (1990), 68, pp. 979-984.
  • Giannelis E.P., Adv. Mater. 8 (1996) 29-35.
  • Mascia L., Tang T. Polyperfluoroether-silica hybrids, Polymer, (1998), Vol. 39, 14, pp. 3045-3057.
  • Delozier D.M., Orwoll RA, Cahoon J.F., Ladislaw J.S., Smith J.G., Connell J.W. Polyimide nanocomposites prepared from high-temperature, reduced charge or-ganoclays, Polymer, (2003), Vol. 44, 8, pp. 2231-2241.
  • Dennis H.R., Hunter D.L., Chang D., Kim S., White J.L., Cho J.W., Paul D.R. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites, Polymer, (2001), Vol. 42, 23, P. 9513-9522.
  • Bazhenov A. Colloid-chemical basis of continuous ion exchange technology hydrosol silica diss., Kand.him.nauk. Moscow, MChTI them. D.I. Mendeleev (1978).
  • Dzisko VA. Fundamentals of catalyst preparation. Nauka, Novosibirsk (1983), 263 p.
  • Preparation and application of silica hydrosols./Ed. prof. Frolov Y.G. Proceedings MChTI them. Mendeleev, M., (1979), p. 137.
  • Pospelov AA., Skorokhodova I.E. Method of preparation of the sol of silicic acid used for forming the inorganic sorbents. In: Chemistry and Technology.: inorganic sorbents, Perm, PPI, (1979), p. 92-94.
  • Pospelov AA., Galkin Y.M. Analysis methods for the preparation and development of non-waste technology acidic silica sol. In: Chemical preparation.: refractory raw materials. L.: LTI (1984), p. 33-41.
  • Laib D.F. Patent 4124471 (USA) Controlling the size of the particles of silica sol. 22.08.77 01 MKI В 01 D 13/02.
  • Lacy R.I., Loeb S. In.: Processes using membranes. Moscow, Mir, 1976.
  • Lipkind VA, Drozhzhennikov S.V. Production of silica sol by electrodialysis. Proceedings MChTI them. Mendeleyev, M., (1979), p. 26-31.
  • Schenker XA. Patent No. 4147605 (USA) Method electrodialytic manufacturing sols. Appl. 14.04.77., 03.04.79 MKI В 01 В 13/02.
  • Frolov Y.G., Grodsky A.S. Preparation hydrosols of silica and zirconia by ion exchange, combined with electrodialysis. Proceedings MChTI them. D.I. Mendeleev, M., (1979).
  • Pospelov AA, Krylov V.N. Application sols and sol-gel methods in synthesis technology sorbents. In: Chemistry and technology of inorganic sorbents. Perm, PPI, (1979).
  • Kudryavtsev P.G., Kavalerova O.B., Kazakova I.L., Volhin V.V. Preparation and stabilization of solutions of metal oxides, Seminar: The sol-gel processes for the production of inorganic materials, Perm (1991), p. 33.
  • Mandelbrot B. Fractal Geometry of Nature -M., SRI, 2002, 656 p.
  • Sears G.W. Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide, Anal. Chem., 1956, 28 (12), pp. 1981-1983, DOI: 10.1021/ac60120a048
  • Lower N.P., Boone A.P., Wilcoxon R.K. US patent 8,637,890. Adhesive applications using alkali silicate glass for electronics, (2014).
  • Kudryavtsev P.G., Kavalerova O.B. Dynamics of changes in the particle size of inorganic polymers in solutions, Conf.: Formation surface and interfacial interactions in composites, Izhevsk (1988), p. 58.
  • Elshenbroyh K. Organometallic chemistry, M., BINOM, 2011, 746 p.
  • Takahashi Y., Kobayashi I., Noguchi M., Hirai N., Nakanishi K., Hattori M. Water purifying apparatus. EP 504597. AO 1K63/04, (1992).
  • Self-setting aqueous mixtures for the manufacture of chemically resistant materials, and their manufacture and use. (Woellner-Werke GmbH und Co.) DE 4104596, C04B28/24, (1992).
  • Kubota Y., Helmkamp M.M., Zones S.I., Davis M.E. Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Microporous Materials, (1996), 6, 4, 213-229.
  • Westall S. Process for producing organosiloxanes. EP 587343, C08G77/08, (1994).
  • Kaliski A.F. Aggregated titania pigment products. PCT Inst. Appl. WO 93 01883, B01J13/00, (1993).
  • Gutfraind R., Sheintuch M. Scaling approach to study diffusion and reaction processes on fractal catalysts. Chem. Engng. Sci., (1992), 47, 17-18, pp. 4425-4433.
  • Coppens M.O., Froment G.F. A comparison of reaction rates in mass fractal and nonfractal catalysts. Fractal Chaos Chem. Eng., Proc. Int. CFIC 96 Conf. (1997), Meeting Date 1996, Publisher: World Scientific, Singapore, 15-26.
  • Avnir D., Farin D., Pfeifer P. A discussion of some aspects of surface fractality and of its determination. New J. Chem. (1992), 16, 4, 439-449.
  • Romm F. Thermodynamics of microporous material formation. In: Surfactant Science Series «Interfacial forces and fields: Theory and applications» (Monographic series, Editor: Jyh-Ping Hsu), Chapter 2, pp. 35-80. Marcel Dekker, Inc. (1999).
  • Romm F. Derivation of the Equations for Isotherm Curves of Adsorption on Microporous Gel Materials, Langmuir, (1996), 12, 14, pp. 3490-3497.
  • Romm F.A., Figovsky O.L. Statistical Polymer Method Modeling of Macromolecules and Aggregates with Branching and Crosslinking, Formed in Random Processes, Discrete Dynamics in Nature and Society, Vol. 2, pp. 203-208.
  • Figovsky O.L., Karchevsky V., Beilin D., Aksenov O. Advanced Waterborne Fire Protective and Heat Retarded Coating Compositions, Organic-Inorganic Hybryds II. Science, Technology, Applications, University of Surrey, Guildford, UK, (2002), p. 16.
  • Figovsky O., Beilin D., Leykin A. Advanced patented protective nanomaterials and coatings, International Letters of Chemistry, Physics and Astronomy, v. 10, N 1, (2013), p. 102-109.
  • Tretyakov Y.D., Goodilin EA. Main directions of fundamental and application-oriented research on nanomaterials, RUSS CHEM, 78, 9, (2009), p. 867-888.
  • Figovsky O.L., Karchevsky V., Romm F. Conductive Coatings Based on Quaternary Ammonium Silicates, ORGANIC-INORGANIC HYBRIDS II. Science, Technology, Applications, University of Surrey, Guildford, UK, 2002, p. 11.
  • Figovsky O., Borisov Yu., Beilin D. Nanostructured Binder for Acid-Resisting Building Materials, J. Scientific Israel-Technological Advantages. (2012), Vol. 14. № 1. P. 7-12.
  • Figovsky O.L., Beilin DA., Ponomarev A.N. Successful application of nanotechnology in construction materials, Nanotechnology in Construction, № 3, (2012), p. 6-21.
  • Beylin DA. Borisov Yu.M., Figovsky O.L., Surovtsev I.S., Patent RF 2408552, Наноструктурирующее связующее для композиционных строительных материалов, (2009), 7 p.
  • Maximov A.I., Moshnikov VA., Tahirov Y.M., Shilov OA. Fundamentals of sol-gel technology nanocomposites. Publisher ETU «LETI», (2007), 273 p.
  • Aseyev A.L. Nanomaterials and nanotechnology for modern semiconductor electronics. Russian nanotechnology. Reviews. (2006), N 1-2, p. 97-110.
  • Shamiryana D., Abellb T., Iacopia F., Maex K. Low-k dielectric materials, Materials Today, Vol. 7, 1, (2004), P. 34-39.
  • Samuelson L. Self-forming nanoscale devices, Materials today, (2003), N 10, p. 22-31.
  • Thelander C., Agarwol P., Brongersma S. et al. Nanowire-based one dimensional electronics, Materials today, (2006), N 10, p. 28-35.
  • Yat Li, Fang Qian, Jie Xiang, Lieber M. Nanowire electronic and optoelectronic devices, Materials today, (2006), N 10, p. 18-27.
  • Patolsky F, Lieber M. Nanowire nanosensors/Materials today, (2005), N 4, p. 20-28.
  • Pauzauskie P.J., Peidong Yang. Nanowire photonics/Materials today, (2006), N 10, p. 36-45.
  • Komarov B.C. Adsorbents and their properties. Minsk, Science and Technology, (1977), 248 p.
  • Kiselev A.V. DAN SSSR (1954), vol. 98, N 427, p. 431.
  • Sheynfayn F.S., Neimark I.E. Kinetics and Catalysis (1967), N 8, p. 433.
  • Kistler S.S. Coherent Expanded-Aerogels. The Journal of Physical Chemistry. (1931), 36, 1, pp. 52-64.
  • Berbice H.K. Kiselev A.V., Nikitin Y.S. Colloid Journal, (1967), Vol. 29, p. 326.
  • Zettemover A.C., Young G.J., Chessick J.J., Healy F.H. A Thermistor Calorimeter for Heats of Wetting.Entropies from Heats of Wetting and Adsorption Data. The Journal of Physical Chemistry (1953), 57, 7, pp. 649-652.
  • Figovsky O.L., Kudryavtsev P.G. Liquid glass and aqueous solutions of silicates as a promising basis of technological processes of new nanocomposite materials, Engineering vestik Don, № 2, (2014).
  • Zvereva NA., Val'tsifer VA. Computer simulation of the structure of disperse systems by the particle method. Journal of Engineering Physics and Thermophysics, Vol. 75, No. 2, (2002).
  • Valtsifer VA, Zvereva NA. Computer modeling of the rheological behavior of the suspension. Mat. Simulation. (2004), v. 16, № 3, p. 57-62.
  • Val'tsifer VA, Zvereva NA. Statistical packing of equal spheres. Advanced Powder Technology, Vol. 10, N 4, (1999), pp. 399-403.
  • Tselishchev Yu.G, Val'tsifer VA. Influence of the Type of Contact between Particles Joined by a Liquid Bridge on the Capillary Cohesive Forces. Colloid Journal, Vol. 65, No. 3, (2003), pp. 385-389.
  • Tselishev Y.G., Valtsifer VA, Strel'nikov V.N. The study of structure of micro particulate filler in the oligomeric compositions in the flow. Journal of Applied Chemistry. (2010), V. 83, 8, p. 1288.
  • Val'tsifer VA, Gubina NA. Rheological and Electrical Properties of an Oligomeric Formulation as Influenced by Fractional Composition of Conducting Filler. Russian Journal of Applied Chemistry, Vol. 76, No. 10, (2003), pp. 1659-1661.
  • Garishin O.K. Geometric synthesis and study of random structures. Structural mechanisms of mechanical properties of granular polymer composites. Ekaterinburg, Ural Branch of Russian Academy of Sciences, (1997), pp. 48-81.
  • Zaitsev A.V., Lukin A.V., Trefilov N.V. Statistical description of the structure of two-phase fibrous composites. Mathematical modeling of systems and processes. (2002), № 10, p. 52-62.
  • Berlin AA., Rothenburg L., Baserst R. Features deformation of polymeric and non-polymeric disordered bodies, Polym. compound. Ser. A. (1992), T. 34, № 7. p. 6-32.
  • Figovsky O., Kudryavtsev P. Advanced nanomaterials based on soluble silicates. Journal «Scientific Israel -Technological Advantages», Vol. 16, no. 3, (2014).
  • Fengge G. Clay/polymer composites: the story, Materials Today, (2004), No. 11, pp. 50-55.
  • ShengN., Boyce M.C., Parks D.M., Rutledge G.C. . Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle/, Polymer, (2004), Vol. 45, pp. 487-506.
  • Garishin O.C., Morozov IA., Shadrin V.V. Experimental studies of polymer-silicate nanocomposites. Herald PNIPU Mechanics, (2013), 2, p. 84-95.
  • Garishin O.K., Svistkov A.L., Gerasin VA, Guseva MA. Simulation of the Elastic-Plastic Behavior of PolyolefinBased Nanocomposites with a Different Structure of Layered Filler. Polymer Science, Ser. A, (2009), Vol. 51, No. 4, pp. 407-415.
  • Manitiu, R.J. Bellair, S. Horsch, E. Gulari . Supercritical Carbon Dioxide-Processed Dispersed Polystyrene Clay Nanocomposites/M.//Macromolecules. (2008), Vol. 41, 21, pp. 8038-8046.
  • Chvalun S.N. Polymer nanocomposites, Nature. (2000), № 7, pp. 22-30.
  • Shepherd P.D., Golemba F.J., Maine F.W. Clay layers, Adv.Chem. Ser. (1974), Vol. 41, pp. 134-141.
  • Oleinik E.F. Plasticity of semi-crystalline Polymers gibkotcepnyh at the micro and meso levels. Polymer. (2003), V. 45, № 10. p. 1-129.
  • Fengge G. Clay/polymer composites: the story. Materials Today. (2004), № 11, pp. 50-55.
  • Sheng N., Boyce M.C., Parks D.M., Rutledge G.C., Abes J.I., Cohen R.E. Multiscale micromechanical modeling of Polymer/clay nano-composites and the effective clay particle//Polymer. (2004), Vol. 45, pp. 487-506.
  • Garishin O.K., Lebedev S.N. Simulation of elastic and plastic properties of polymeric composites with silicate lamellar nanofillerna. Nosystems physics, chemistry, mathematics, (2011), 2, 2, P. 71-75.
  • Garishin O.C., Korlyakov A.S. Modeling of the mechanical interaction between the filler particles and the binder in the polymer-silicate nanocomposites at finite macrodeformation. Computational Continuum Mechanics. (2008), Vol. 2, № 3. p. 25-33.
  • Garishin O.K., Gerasin VA., Guseva MA. Simulation of the Elastic-Plastic Behavior of PolyolefinBased Nanocomposites with a Different Structure of Layered Fill-er1Polymer Science, Ser. A, (2011), Vol. 53, No. 12, pp. 1187-1197.
  • Platikanov D., Exerova D. eds. The Best of Colloid Science, Wiley-VCH, Weinheim, (2009).
  • Feynmann R.P. Miniaturization, Reinhold, New York, (1961).
  • Shabanova NA., Sarkisov P.D. Fundamentals of sol-gel technology nanosized silica, Moscow, ICC «Akademkniga», (2004), 208 p.
  • Pomogailo A.D., Dzhardimalieva G.I. Monomeric and polymeric metal carboxyl-ates, Moscow, FIZMATLIT, (2009), 400 p.
  • Pomogailo A.D., Kastelman V.N. Metallopolymer nanocomposites, Springer, Heidelberg, (2005), 563 p.
  • Wang J., Gao L. Investigation of Interactions Between Polymer-coated Nano-Y-TZP Particles by AFM. J. Mater. Sci. Lett., (1999), Vol. 18, 3, pp. 181-183.
  • Pomodailo A.D., Dzardimalieva G.I., Rozenberg A.S. Acta Physica Polonica. A. (2002), Vol. 102, p. 135.
  • Sun S., Murray C.B., Folks L. Moser A. Science, (2000), Vol. 287, p. 1989.
  • An K., Lee N., Park J., Kim S.C., Hwang Y., Park J.G., Kim J.Y., Park J.H., Han M.J., Yu J., Hyeon T. Synthesis, Characterization, and Self-Assembly of Pencil-Shaped CoO Nanorods. J. Am. Chem. Soc., (2006), 128, 30, pp. 9753-9760, DOI: 10.1021/ja0608702.
  • Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem. Commun., (2003), 927-934, DOI: 10.1039/B207789B
  • Gross S., Zattin A., Noto V.D., Lavina S. Metal Oxoclusters as Molecular Building Blocks for the Development of Nanostructured Inorganic-Organic Hybrid Thin Films. Monatshefte ffir Chemie/Chemical Monthly, (2006), Vol. 137, 5, pp. 583593, DOI: 10.1007/s00706-006-0444-x
  • Armelao L., Eisenmenger-Dittner C., Groenewolt M., Gross S., Sada C., Schubert U, Tondello E., Zattin A. Zirconium and hafnium oxoclusters as molecular building blocks for highly dispersed ZrO2 or HfO2 nanoparticles in silica thin films, J. Mater. Chem., (2005), 15, pp. 1838-1848, DOI: 10.1039/B500521C
  • Armelao L., Bertagnolli H., BleinerD., Groenewolt M., Gross S., Krishnan V., Sada C., Schubert U., Tondello E., Zattin A. Highly Dispersed Mixed Zirconia and Hafnia Nanoparticles in a Silica Matrix: First Example of a ZrO2-HfO2-SiO2 Ternary Oxide System. Advanced Functional Materials, (2007), Vol. 17, 10, pp. 1671-1681, DOI: 10.1002/adfm.200600458
  • Moitra N., Ichii S., Kamei T., Kanamori K., Zhu Y., Takeda K., Nakanishi K., and Shimada T. Surface Functionalization of Silica by Si-H Activation of Hydrosi-lanes, Journal of the American Chemical Society, (2014), Vol. 136, 33, pp. 1157011573, DOI: 10.1021/ja504115d
  • Kuchumov B.M., Koretskaya T.P., Igumenov I.K., Zharkova G.I., Sebezhko V.N. A method of applying a metallic coating on a substrate, RF Patent № 2392352 from 26.11.2008.
  • Romm F, Figovsky O.L. Combined Monte-Carlo/Thermodynamic Model of Formation of Microporous Aggregate Structure Like Silica from Quarternary Ammonium Silicate Solution Journal of Surfactants and Detergents, v. 3, No.4, (2000), p. 475-481.
  • Onozawa et al. US patent 8,507,630. Organic inorganic composite material and utilization thereof, (2013).
Еще
Статья научная