Modeling flexibility of nanocomposite pipelines

Автор: Baikov I.R., Smorodova O.V., Baibakov V.R.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Research of nanomaterials properties

Статья в выпуске: 6 Vol.11, 2019 года.

Бесплатный доступ

Pipes for oil and gas pipelines made of nanocomposite materials are increasingly used. The most common manufacture of composite piping is by winding fiberglass onto a rotating mandrel. With continuous winding, it is possible to choose the angle of laying the threads – the so-called angle of reinforcement. Depending on its value, as well as on the angle of curvature of the pipeline when its axis deviates from the straight direction, the strength indicators of the pipe change. The article discusses the modeling of the flexibility behavior of a composite pipeline of a curved shape. It is curved pipelines that are in the most difficult operating conditions, accompanied by the manifestation of the Karman effect in the pipe turning angles. As a modeling parameter, a coefficient of increase in the flexibility of the pipe is adopted. Influencing factors are the angle of reinforcement of the composite and the angle of curvature of the axis of the pipeline. An analysis of the results of the calculation performed earlier showed that in the range of reinforcement angles from 0о to 85о the dynamics of the coefficient of increase in pipe flexibility is different. Mathematical models have been developed for two ranges of values for the coefficient of increase in the flexibility of a composite pipe. Modeling error averages no more than 2%.

Еще

Composite, flexibility, multi-parameter regression, modeling, asymptotic coordinates

Короткий адрес: https://sciup.org/142227447

IDR: 142227447   |   DOI: 10.15828/2075-8545-2019-11-6-671-685

Список литературы Modeling flexibility of nanocomposite pipelines

  • Baikov I.R., Smorodova O.V., Kitaev S.V. Nanocomposite pipelines energy efficiency. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2018, Vol. 10, no. 3, pp. 20–36. DOI: dx.doi.org/10.15828/2075-8545-2018-10-3-20- 36. (InRussian).
  • Smorodova O.V., Kostareva S.N., Baykov I.R., Basharova L.R. Effektivnost’ kompozitnykh truboprovodov dlya gazotransportnykh sistem [The effectiveness of composite pipelines for gas transmission systems]. Elektronnyy nauchnyy zhurnal Neftegazovoye delo [Electronic scientific journal “Oil and Gas Business”]. 2019. No. 1. P. 201–217. (In Russian). Available at: http://ogbus.ru/ files/ogbus/issues/1_2019/ogbus_1_2019_p201-217.pdf. (Accessed: 20.09.2019).
  • ZaytsevK. I. Primeneniye plastmassovykh trub na ob”yektakh gazovoy promyshlennosti [The use of plastic pipes at gas industry facilities].Stroitel’stvo truboprovodov [Pipeline construction]. 1996. No. 3. P. 33–34.
  • Yagubov E.Z. Razrabotka printsipov obespecheniya konstruktivnoy nadezhnosti neftegazoprovodnykh sistem na osnove korrozionnostoykikh kompozitnykh trub [Development of principles for ensuring the structural reliability of oil and gas pipeline systems based on corrosion-resistant composite pipes]. Diss. … d-ra tekhn. nauk [Thesis for a Doctorate’s degree]. Uhta, 2011. 319 p. (In Russian).
  • Bashar, M. Study of matrix micro-cracking in nanoclay and acrylic tri-block- copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures / M. Bashar, U. Sundararaj, P. Mertiny. eXPRESS Polymer Letters. 2011. V. 5. № 10. P. 882–896.
  • Harris B. Fatigue in composits. England: Woodheard Publish Lmt., 2003. 742 p.
  • Hsieh, Т. H. The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles / Т. H. Hsieh, A. J. Kinloch, K. Masania, S. J. Lee, A. C. Taylor, S. Sprenger. Journal of Materials Science. 2010. №45. P. 1193–1210.
  • Smorodova O.V., Kitaev S.V., Baikov I.R. Composite gas pipelines: prospects of energy conservation. Journal of Physics: Conference Series 2018. P. 012069. (In English). Available at: http://iopscience.iop.org/article/10.1088/1742-6596/1111/1/012069/ pdf(Accessed: 20.09.2019).
  • Kalinchev V.A., Makarov M.S. Namotannyyestekloplastiki [Coiled fiberglass]. Moscow. Khimiya [Chemistry], 1986. 272 p. (In Russian).
  • Kolchinskiy YU.L. Izgotovleniye i montazh tekhnologicheskikh truboprovodov iz nemetallicheskikh materialov [Production and installation of technological pipelines from non-metallic materials]. Moscow. Stroyizdat [Stroyizdat], 1976. 159 p. (In Russian).
  • Owen M.J. Failure of glass-reinforcedplasticsundersingleandrepeatedloading / M.J. Owen, R. Dukes. Journal of Strain Analysis for engineering design. 1967. Vol. 2. № 4. рр. 272–279.
  • KarimovE.Kh., KarimovO.Kh., Movsumzade E.M., Boev E.V. The influence of metal nanoparticles on the mechanical properties of composite materials. Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2017, Vol. 9, no. 4, pp. 22–47. DOI: dx.doi.org/10.15828/2075-8545-2017-9-4-22-47. (InRussian).
  • Kamershteyn A.G., Rozhdestvenskiy V.V., Ruchimskiy M.N. Raschety truboprovodov na prochnost’. Spravochnaya kniga [Strength calculations of pipelines. Reference book]. Moscow: Gosudarstvennoye nauchno-tekhnicheskoye izdatel’stvo neftyanoyigorno- toplivnoy literatury [State Scientific and Technical Publishing House of Oil and Mining and Fuel Literature]. 1963. 423 p. (In Russian). Available at: http://трубопровод.рф/static/books/2013/10/08/kamershtejn-raschet-magistralnyih-truboprovodovna- prochnost-i-ustojchivost-1963.pdf (Accessed: 20.09.2019).
  • Loskutov YU.V., Kulikov YU.A. Prochnost’ izhostkost’ krivolineynykh mnogosloynykh kompozitnykh trub pri chistom izgibe [Strength and stiffness of curved multilayer composite pipes with clean bending]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of composite materials and structures]. 2008. V. 14. No. 2. P. 157–164. (In Russian).
  • Loskutov YU.V., Kulikov YU.A., Shlychkov S.V., Temnova Ye.B. Uprugiye kharakteristiki mnogosloynykh krivolineynykh trub iz armirovannogo plastika [Elastic characteristics of multilayer curved pipes made of reinforced plastic]. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of composite materials and structures]. 2006. V. 12. No. 2. P. 219–233. (In Russian).
  • Vallons K., Adolphs G., Lucas P., Lomov S.V., Verpoest I. The influence of the stitching pattern on the internal geometry, quasi-static and fatigue mechanical properties of glass fibre non-crimp fabric composites. Composites Part A: Applied Science and Manufacturing. 2014. Vol. 56. Р. 272–279.
  • Hydro R.M. Epoxies toughened with triblock copolymers / R. M. Hydro, R. A. Pearson. Journal of Polymer Science Part B: Polymer Physics. 2007. №45.P. 1470–1481.
  • Prodromou A.G., Lomov S.V., Verpoest I. The method of cells and the mechanical properties of textile composites. Composite Structures. 2011. Vol. 93. № 4. Р. 1290–1299.
  • Korotkov A.V. Razrabotka metodiki rascheta parametro v dinamicheskoy ustoychivosti mnogosloynykh kompozitnykh truboprovodov letatel’nykh apparatov [Development of a methodology for calculating the dynamic stability parameters of multilayer composite aircraft pipelines]. Diss. … kand. tekhn. nauk [Ph.D. thesis]. Yoshkar-Ola, 2011. 159 p. (In Russian).
  • Loskutov YU.V., Ivanov S.P., Bagautdinov I.N., Gizatullin R.G., Yegorov A.V. Vliyaniy eskhemy namotki na zhestkost’ i napryazhennoye sostoyaniye mnogosloynykh krivolineynykh trub iz kompozitsionnykh materialov [The influence of the winding scheme on the stiffness and stress state of multilayer curved pipes made of composite materials]. Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Structural Mechanics of Engineering Structures and Structures]. 2011. No. 4. P. 57–63. (In Russian).
  • Loskutov YU.V. Prochnost’ nefteprovodov iz armirovannykh plastikov [Strength of oil pipelines from reinforced plastics]. Fundamental’nyye issledovaniya [Fundamental research]. 2013. No. 11-9. P. 1824–1828. (In Russian). Available at: https:// fundamental-research.ru/ru/article/view?id=33464 (Accessed: 20.12.2019).
  • Dil’man V.V., Polyanin A.D. Metody model’nykh uravneniy i analogiy v khimicheskoy tekhnologii [Methods of model equations and analogies in chemical technology]. Moscow: Khimiya [Chemistry], 1988. 304 p. (In Russian).
  • Baykov I.R., Zhdanova T.G., Gareyev E.A. Modelirovaniye tekhnologicheskikh protsessov truboprovodnogo transporta nefti i gaza [Modeling of technological processes of pipeline transport of oil and gas].Ufa: UNI [Ufa: UNI], 1994. 128 p. (In Russian).
Еще
Статья научная