Mathematical modelling of thermo-mechanical stresses arising in rectangular supports of thermoelectric modules

Бесплатный доступ

Traditionally available unsegmented thermoelectric modules are simple to operate but their applications are limited. Whereas, segmented thermoelectric modules have got significant amount of advantage over unsegmented thermoelectric modules, materially and performance vise, but structural reliability is still unresolved challenge. Thermoelectrical module encounters high stresses due to increase in operating temperature and difference in coefficient of thermal expansion. Consequently, these stresses create deformation and cracks in thermoelectric legs, especially at higher temperature. In this paper a comprehensive analytical model for Thermoelectric modules is discussed. The model can predict thermally induced and shearing stresses in Thermoelectric module. The contemplation of geometrical shape for thermoelectrical module is limited to rectangular and beam-like design, for unsegmented and segmented modules. The analytical model was compiled in MATLAB and Python and results are discussed in detail.

Еще

Thermoelectric, thermomechanical stresses, stress-strain relationship, shear stress

Короткий адрес: https://readera.org/148321622

IDR: 148321622   |   DOI: 10.25586/RNU.V9187.21.01.P.023

Список литературы Mathematical modelling of thermo-mechanical stresses arising in rectangular supports of thermoelectric modules

  • Boas R.P. Integrability of Trigonometric Series // Duke Mathematical Journal. 1951. Vol. 18, no. 10. Pp. 787–793.
  • Carrera E., Fazzolari F.A., Cinefra M. (Eds.). Thermal Stress Analysis of Beams, Plates and Shells. Oxford: Academic Press, 2017. Pp. 91–116.
  • Epstein J.M. Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science. Princeton: Princeton University Press, 2016. 192 p. DOI: 10.2307/j.ctt5hhp5x.7
  • Erturun U., Erermis K., Mossi K. Effect of Various Leg Geometries on Thermo-Mechanical and Power Generation Performance of Thermoelectric Devices // Applied Thermal Engineering. 2014. Vol. 73, no. 1. Pp. 128–141. DOI: 10.1016/j.applthermaleng.2014.07.027
  • Erturun U., Erermis K., Mossi K. Influence of Leg Sizing and Spacing on Power Generation and Thermal Stresses of Thermoelectric Devices // Applied Energy. 2015. Vol. 159. Pp. 19–27. DOI: 10.1016/j.apenergy.2015.08.112
  • Furlong R.R., Wahlquist E.J. U.S. Space Missions Using Radioisotope Power Systems // Nuclear News. April, 1999. Pp. 26–34.
  • He W., Zhang G., Zhang X., Ji J., Li G. Recent Development and Application of Thermoelectric Generator and Cooler // Applied Energy. 2015. Vol. 143. Pp. 1–25. DOI: 10.1016/j.apenergy.2014.12.075
  • Henry J., Ramos A.M. (Eds.). Factorization of Boundary Value Problems Using the Invariant Embedding Method. Amsterdam: Elsevier, 2016. 256 p.
  • Ike Suchih Chi, Smith K., Chen-Kuo Huang, Firdosy S. et al. Advanced Skutterudite-Based Unicouples for a Proposed Enhanced Multi-Mission Radioisotope Thermoelectric Generator: An Update // Journal of the Electrochemical Society. 2017. DOI: 10.1149/ma2017-02/27/1175
  • Jin Z.H. Thermal Stresses in a Multilayered Thin Film Thermoelectric Structure // Microelectronics Reliability. 2014. Vol. 54, no. 6-7. Pp. 1363–1368. DOI: 10.1016/j.microrel.2014.02.028
  • Johnson T.F., Pilkey W.D. Accurate Thermal Stresses for Beams: Normal Stress / NASA Technical Reports Server [Digital Resource]. – URL: https://ntrs.nasa.gov/api/citations/20040001054/downloads/20040001054.pdf (Date of Application: 02.12.2020).
  • Lee M.Y., Seo J.H., Lee H.S., Garud K.S. Power Generation, Efficiency and Thermal Stress of Thermoelectric Module with Leg Geometry, Material, Segmentation and Two-Stage Arrangement // Symmetry. 2020. Vol. 12, no. 5. DOI: 10.3390/SYM12050786
  • Malzbender J. Mechanical and Thermal Stresses in Multilayered Materials // Journal of Applied Physics. 2004. Vol. 95, no. 4. Pp. 1780–1782. DOI: 10.1063/1.1642289
  • Morley L.S.D., Filonenko-Borodich M. Theory of Elasticity // The Mathematical Gazette. 1967. Vol. 51, no. 378. Pp. 376–377. DOI: 10.2307/3613011
  • Nikolova G., Ivanova J. Interfacial Shear and Peeling Stresses in a Two-Plate Structure Subjected to Monotanically Increasing Thermal Loading // Journal of Theoretical and Applied Mechanics. 2013. Vol. 51, no. 4. Pp. 937–947.
  • Noda N., Hetharski R.B., Yoshinobu T. Thermal Stresses. 2nd Ed. Boca Raton: Routledge, 2003. 508 p.
  • Pan T., Gong T., Yang W., Wu Y. Numerical Study on the Thermal Stress and its Formation Mechanism of a Thermoelectric Device // Journal of Thermal Science. 2018. Vol. 27, no. 3. Pp. 249–258. DOI: 10.1007/s11630-018-1006-3
  • Rees D.W.A. Mechanics of Solids and Structures. 2nd Ed. London: Imperial College Press, 2000. 752 p. DOI: 10.1142/9781860943065_0001
  • Tian H., Jiang N., Jia Q., Sun X., Shu G. et al. Comparison of Segmented and Traditional Thermoelectric Generator for Waste Heat Recovery of Diesel Engine // Energy Procedia. 2015. Vol. 75. Pp. 590–596. DOI: 10.1016/j.egypro.2015.07.461
  • Sadd M.H. (ed.). Elasticity. Burlington: Academic Press, 2005. Pp. 123–138.
  • Sattar S. Measuring Probability of Failure of Thermoelectric Legs through Lognormal and Weibull Distribution // Journal of Physics: Conference Series. 2020. Vol. 1560, no. 1. DOI: 10.1088/1742-6596/1560/1/012025
  • Sattar S., Osipkov A. Understanding Reliability of the Thermoelectric Devices for Space Application // Advances in the Astronautical Sciences. 2020. Vol. 170. Pp. 591–605.
  • Siju K.C., Kumar M. Reliability Analysis of Time Dependent Stress-Strength Model with Random Cycle Times // Perspectives in Science. 2016. Vol. 8. Pp. 654–657. DOI: 10.1016/j.pisc.2016.06.049
  • Suhir E. Stresses in Bi-Metal Thermostats // Journal of Applied Mechanics. 1986. Vol. 5, iss. 3. Pp. 657–660.
  • Suhir E., Shakouri A. Assembly Bonded at the Ends: Could Thinner and Longer Legs Result in a Lower Thermal Stress in a Thermoelectric Module Design // Journal of Applied Mechanics. 2012. Vol. 79, no. 6. DOI: 10.1115/1.4006597
  • Suhir E., Shakouri A. Predicted Thermal Stress in a Multileg Thermoelectric Module (TEM) Design // Journal of Applied Mechanics. 2013. Vol. 80, no. 2. Pp. 1–12. DOI: 10.1115/1.4007524
  • Suter C., Tomeљ P., Weidenkaff A., Steinfeld A. Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation // Materials. 2010. Vol. 3, no. 4. Pp. 2735–2752. DOI: 10.3390/ma3042735
  • Zakrajsek J.F., Woerner D.F., Fleurial J.-P. NASA Special Session: Next-Generation Radioisotope Thermoelectric Generator (RTG) Discussion / NASA Radioisotope Power Systems [Digital Resource]. – URL: https://rps.nasa.gov/resources/69/next-generation-radioisotope-thermoelectric-generator-presentation/ (Date of Application: 02.12.2020).
  • Zhang A.B., Wang B.L., Wang J., Du J.K. et al. Thermodynamics Analysis of Thermoelectric Materials: Influence of Cracking on Efficiency of Thermoelectric Conversion // Applied Thermal Engineering. 2017. Vol. 127. Pp. 1442–1450. DOI: 10.1016/j.applthermaleng.2017.08.154
  • Zhou X. et al. Routes for High-Performance Thermoelectric Materials // Materials Today. 2018. Vol. 21, no. 9. Pp. 974–988. DOI: 10.1016/j.mattod.2018.03.039
  • Ziabari A., Suhir E., Shakouri A. Minimizing Thermally Induced Interfacial Shearing Stress in a Thermoelectric Module with Low Fractional Area Coverage // Microelectronics Journal. 2014. Vol. 45, no. 5. Pp. 547–553. DOI: 10.1016/j.mejo.2013.12.004
Еще
Статья научная