Экспериментальное исследование обратного потока энергии в фокусе

Автор: Котляр Виктор Викторович, Стафеев Сергей Сергеевич, Налимов Антон Геннадьевич, Ковалев Алексей Андреевич, Порфирьев Алексей Петрович

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 6 т.44, 2020 года.

Бесплатный доступ

С помощью двух одинаковых микрообъективов с числовой апертурой 0,95 было экспериментально показано, что интенсивность на оптической оси в плоскости фокуса оптического вихря с топологическим зарядом 2 равна нулю для света с правой круговой поляризацией и ненулевая для света с левой круговой поляризацией. Подтверждением того, что в последнем случае на оптической оси существует обратный поток энергии, является наличие в центре измеренного потока энергии слабого локального максимума (пятна Араго), объясняемого дифракцией прямого потока энергии на круге диаметром 300 нм (соответствует диаметру трубки обратного потока энергии). Сравнивая численные и экспериментальные распределения интенсивности, возможно определить диаметр трубки обратного потока - он равен расстоянию между нулями интенсивности. Для числовой апертуры 0,95 и длины волны 532 нм диаметр трубки обратного потока равен 300 нм. Также экспериментально показано, что при фокусировке цилиндрического векторного пучка второго порядка линзой с числовой апертурой 0,95 возникает осесимметричный поток энергии с очень слабым максимумом в центре (пятно Араго). Такое распределение объясняется дифракцией прямого потока энергии на круглой области диаметром 300 нм, в которой поток энергии обратный. Это также является подтверждением присутствия обратного потока энергии на оптической оси.

Еще

Обратный поток энергии, острая фокусировка, оптический эксперимент, формулы ричардса-вольфа, fdtd-метод, оптический вихрь, цилиндрический векторный пучок

Короткий адрес: https://sciup.org/140250059

IDR: 140250059   |   DOI: 10.18287/2412-6179-CO-763

Список литературы Экспериментальное исследование обратного потока энергии в фокусе

  • Nye, J.F. Dislocations in wave trains / J.F. Nye, M.V. Berry // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1974. - Vol. 336, Issue 1605. - P. 165-190.
  • Soskin, M. Singular optics / M. Soskin, M. Vasnetsov. - In Book: Progress in optics / ed. by E. Wolf. - Elsevier, 2001. - P. 219-276.
  • Swartzlander, G.A., Jr. The optical vortex coronagraph / G.A. Swartzlander Jr // Journal of Optics A: Pure and Applied Optics. - 2009. - Vol. 11, Issue 9. - 094022.
  • Gahagan, K.T. Optical vortex trapping of particles / K.T. Gahagan, G.A. Swartzlander // Optics Letters. - 1996. - Vol. 21, Issue 11. - P. 827-829.
  • Gecevičius, M. Single beam optical vortex tweezers with tunable orbital angular momentum / M. Gecevičius, R. Drevinskas, M. Beresna, P.G. Kazansky // Applied Physics Letters. - 2014. - Vol. 104, Issue 23. - 231110.
  • Simpson, N.B. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner / N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett // Optics Letters. - 1997. - Vol. 22, Issue 1. - P. 52-54.
  • Volke-Sepulveda, K. Orbital angular momentum of a high-order Bessel light beam / K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia // Journal of Optics B: Quantum and Semiclassical Optics. - 2002. - Vol. 4, Issue 2. - P. S82-S89.
  • Thidé, B. Utilization of photon orbital angular momentum in the low-frequency radio domain / B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T.D. Carozzi, Y.N. Istomin, N.H. Ibragimov, R. Khamitova // Physical Review Letters. - 2007. - Vol. 99, Issue 8. - 087701.
  • Bandyopadhyay, A. Wigner distribution of elliptical quantum optical vortex / A. Bandyopadhyay, R.P. Singh // Optics Communications. - 2011. - Vol. 284, Issue 1. - P. 256-261.
  • Bandyopadhyay, A. Entanglement of a quantum optical elliptic vortex / A. Bandyopadhyay, S. Prabhakar, R.P. Singh // Physics Letters A. - 2011. - Vol. 375, Issue 19. - P. 1926-1929.
  • McMorran, B.J. Electron vortex beams with high quanta of orbital angular momentum / B.J. McMorran, A. Agrawal, I.M. Anderson, A.A. Herzing, H.J. Lezec, J.J. McClelland, J. Unguris // Science. - 2011. - Vol. 331, Issue 6014. - P. 192-195.
  • Kotlyar, V. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy / V. Kotlyar, A. Kovalev, A. Nalimov // Optics Letters. - 2018. - Vol. 43, Issue 12. - P. 2921-2924. -
  • DOI: 10.1364/OL.43.002921
  • Kotlyar, V.V. Helical reverse flux of light of a focused optical vortex / V.V. Kotlyar, A.G. Nalimov, A.A. Kovalev // Journal of Optics. - 2018. - Vol. 20, Issue 9. - 095603. -
  • DOI: 10.1088/2040-8986/aad606
  • Kotlyar, V.V. Energy backflow in the focus of an optical vortex / V.V. Kotlyar, A.G. Nalimov, S.S. Stafeev // Laser Physics. - 2018. - Vol. 28, Issue 12. - 126203. -
  • DOI: 10.1088/1555-6611/aae02f
  • Kotlyar, V.V. Sharp focusing of vector optical vortices using a metalens / V.V. Kotlyar, A.G. Nalimov // Journal of Optics. - 2018. - Vol. 20, Issue 7. - 075101. -
  • DOI: 10.1088/2040-8986/aac4b3
  • Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system / B. Richards, E. Wolf // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1959. - Vol. 253, Issue 1274. - P. 358-379.
  • Katsenelenbaum, B.Z. What is the direction of the Poynting vector? / B.Z. Katsenelenbaum // Journal of Communications Technology and Electronics. - 1997. - Vol. 42, Issue 2. - P. 119-120.
  • Karman, G.P. Creation and annigilation of phase singularities in a focal field / G.P. Karman, M.W. Beijersbergen, A. van Duijl, J.P. Woerdman // Optics Letters. - 1997. - Vol. 22, Issue 9. - P. 1503-1505.
  • Berry, M.V. Wave dislocation reactions in non-paraxial Gaussian beams / M.V. Berry // Journal of Modern Optics. - 1998. -Vol. 45, Issue 9. - P. 1845-1858.
  • Volyar, A.V. Nonparaxial Gausian beams: 1. Vector fields / A.V. Volyar // Technical Physics Letters. - 2000. - Vol. 26, Issue 7. - P. 573-575.
  • Volyar, A.V. The structure of a nonparaxial Gaussian beam near the focus: II. Optical vortices / A.V. Volyar, V.G. Shvedov, T.A. Fadeeva // Optics and Spectroscopy. - 2001. - Vol. 90, Issue 1. - P. 93-100.
  • Salem, M.A. Energy flow characteristics of vector X-Waves / M.A. Salem, H. Bağcı // Optics Express. - 2011. - Vol. 19, Issue 9. - P. 8526-8532.
  • Vaveliuk, P. Negative propagation effect in nonparaxial Airy beams / P. Vaveliuk, O. Martinez-Matos // Optics Express. - 2012. - Vol. 20, Issue 24. - P. 26913-26921.
  • Rondón-Ojeda, I. Properties of the Poynting vector for invariant beams: Negative propagation in Weber beams / I. Rondón-Ojeda, F. Soto-Eguibar // Wave Motion. - 2018. - Vol. 78. - P. 176-184.
  • Berry, M.V. Optical currents / M.V. Berry // Journal of Optics A: Pure and Applied Optics. - 2009. - Vol. 11, Issue 9. - 094001.
  • Song, Z. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport / Z. Song, T.A. Kelf, W.H. Sanchez, M.S. Roberts, J. Rička, M. Frenz, A.V. Zvyagin // Biomedical Optics Express. - 2011. - Vol. 2, Issue 12. - P. 3321-3333.
  • Zhang, L. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) / L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York // Journal of Nanoparticle Research. - 2007. - Vol. 9, Issue 3. - P. 479-489.
  • Sirelkhatim, A. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism / A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad // Nano-Micro Letters. - 2015. - Vol. 7, Issue 3. - P. 219-242.
  • Omidvar, A. Indium-doped and positively charged ZnO nanoclusters: Versatile materials for CO detection / A. Omidvar // Vacuum. - 2018. - Vol. 147. - P. 126-133.
  • Alisafaee, H. Polarization insensitivity in epsilon-near-zero metamaterial from plasmonic aluminum-doped zinc oxide nanoparticles / H. Alisafaee, M.A. Fiddy // Journal of Nanophotonics. - 2014. - Vol. 8, Issue 1. - 083898.
  • Beek, W.J.E. Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer / W.J.E. Beek, M.M. Wienk, R.A.J. Janssen // Advanced Materials. - 2004. - Vol. 16, Issue 12. - P. 1009-1013.
  • Hau, S.K. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer / S.K. Hau, H.-L. Yip, N.S. Baek, J. Zou, K. O'Malley, A.K.Y. Jen // Applied Physics Letters. - 2008. - Vol. 92, Issue 25. - 253301.
  • Stafeev, S.S. The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam / S.S. Stafeev, V.V. Kotlyar, A.G. Nalimov, E.S. Kozlova // IEEE Photonics Journal. - 2019. - Vol. 11, Issue 4. - 4500810. -
  • DOI: 10.1109/JPHOT.2019.2921669
  • Kotlyar, V.V. Energy backflow in the focus of a light beam with phase or polarization singularity / V.V. Kotlyar, S.S. Stafeev, A.G. Nalimov // Physical Review A. - 2019. - Vol. 99, Issue 3. - 033840. -
  • DOI: 10.1103/PhysRevA.99.033840
  • Harada, Y. Radiation forces on a dielectric sphere in the Rayleigh scattering regime / Y. Harada, T. Asakura // Optics Communications. - 1996. - Vol. 124, Issue 5-6. - P. 529-541. Bekshaev, A.Y. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows / A.Y. Bekshaev // Journal of Optics. - 2013. - Vol. 15, Issue 4. - 044004.
Еще
Статья научная