Исследование процесса нейтрализации бромсодержащих систем фталатного типа

Бесплатный доступ

Рассмотрены особенности заключительных стадий процесса получения бромсодержащих систем фталатного типа. Выявлены факторы, оказывающие влияние на качество целевого продукта, по которым составлен и реализован план эксперимента. В качестве факторов, влияющих на процесс, выбраны: А - температура, К; В - продолжительность нейтрализации, ч; С - массовая доля нейтрализующего агента, %; D - отношение использованной массы нейтрализующего агента к его расчетной массе по кислотному числу реакционной массы. С помощью графического редактора проведена обработка кривых, характеризующих зависимость функции отклика от различных факторов. Проведен анализ полученных кривых, свидетельствующий о наличии экстремумов и точек перегиба, соответствующих минимальному кислотному числу. Сравнение расчетных и экспериментальных данных показало, что ошибка результата, полученного по регрессионному уравнению, составляет не более 10%. С помощью балансовых расчетов установлено, что реализация процесса нейтрализации бромсодержащих систем фталатного типа без растворителя позволит снизить потери в 3-5 раз. Выявлены оптимальные условия, обеспечивающих низкое кислотное число целевого продукта после нейтрализации: температура нейтрализации 315 К, продолжительность нейтрализации 0,5 ч, концентрация гидроксида калия в водном растворе 11 мас. %, избыток нейтрализующего агента на моль расчетного 2,44 моль/моль. Доказано, что ведение процесса без растворителей оказывает положительное влияние как на технологические, так и на экономические показатели.

Еще

Фталаты, бромирование, бромсодержащие системы, нейтрализация, планирование эксперимента

Короткий адрес: https://sciup.org/140257271

IDR: 140257271   |   DOI: 10.20914/2310-1202-2020-4-236-241

Список литературы Исследование процесса нейтрализации бромсодержащих систем фталатного типа

  • Хараев А.М., Бажева Р.Ч., Хараева Р.А., Лукожев Р.В., Инаркиева З.И. Синтез и свойства ненасыщенных блок-сополиэфиркетонов // Пластические массы. 2016. № 1-2. С. 24-27.
  • ГОСТ 8728-88. Пластификаторы. Технические условия.
  • Егоров ММ. и др. Влияние технологических параметров получения пластифицированных поливинилбутиральных плёнок на их оптические и физико-механические свойства // Пластические массы. 2019. № 7-8. С. 7-8.
  • Дудочкина Е.А., Лямкин Д.И., Жемерикин А.Н., Черкашин П.А. Модифицирование структурно-механических свойств высоконаполненных полиолефиновых композиций // Пластические массы. 2016. № 1-2. С. 40-42.
  • Zekri N., Fareghi-Alamdari R., Khodarahmi Z. Functionalized dicationic ionic liquids: Green and efficient alternatives for catalysts in phthalate plasticizers preparation // Journal of Chemical Sciences. 2016. № 128. P. 1277-1284.
  • Li F.P. et al. Di(n-butyl) phthalate exposure impairs meiotic competence and development of mouse oocyte // Environmental Pollution. 2019. № 246. P. 597-607.
  • Bartoszewicz M., Michalska M., Cieszynska-Semenowicz M., Czernych R. et al. The problem of wastewater in shale gas exploitation: The influence of fracturing flowback water on activated sludge at a wastewater treatment plant // Polish Journal of Environmental Studies. 2016. № 25. P. 1839-1845.
  • Mao J., Zhang C., Yang X., Zhang Z. Investigation on Problems of Wastewater from Hydraulic Fracturing and Their Solutions // Water, Air, and Soil Pollution. 2018. № 229.
  • Christiansen L.B., Pedersen K.L., Pedersen S.N., Korsgaard B. et al. In vivo comparison of xenoestrogens using rainbow trout vitellogenin induction as a screening system // Environmental Toxicology and Chemistry. 2000. № 19. P. 1867-1874.
  • Mustafina S. et al. Numerical algorithm for finding optimal initial concentrations of chemical reactions // IIUM Engineering Journal. 2020. № 21. P. 167-174.
  • Liu T., Myers M. C., Yu J. Q. Copper-Catalyzed Bromination of C (sp3)- H Bonds Distal to Functional Groups // Angewandte Chemie. 2017. V. 129. № 1. P. 312-315.
  • Sabuzi F. et al. Sustainable bromination of organic compounds: A critical review // Coordination Chemistry Reviews. 2019. V. 385. P. 100-136.
  • Qu J. et al. Bromination of the Small-Molecule Acceptor with Fixed Position for High-Performance Solar Cells // Chemistry of Materials. 2019. V. 31. № 19. P. 8044-8051.
  • Warratz S. et al. meta-C- H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis // Angewandte Chemie International Edition. 2017. V. 56. № 6. P. 1557-1560.
  • Sathyamoorthi S. et al. Site-selective bromination of sp 3 C-H bonds // Chemical science. 2018. V. 9. № 1. P. 100-104.
Еще
Статья научная