Importance of atomic-like basis set optimization for DFT modelling of nanomaterials

Бесплатный доступ

Atomic-like orbital basis sets allow efficient calculation of nanomaterial’s surface properties within the density functional theory. However, unlike plane wave basis sets, they require thorough optimization on a reference system before modelling systems of interest. We considered the basis set optimization procedure for several structures: bulk tantalum carbide, oxygen molecule, bulk lithium, and α-carbyne. We showed that during the optimization procedure not only the total energy of a reference system should be monitored but other physical characteristics (bond length and atomic charges) too. Moreover, optimal basis parameters could not correspond to the minimum total energy of a reference system to get the correct physical properties. We obtained optimal orbital parameters, which can be used for modelling of the following systems: oxygen adsorption on tantalum carbide surface, and Li-functionalized carbyne. Considering oxygen adsorption on TaC surface and Li-functionalization of carbyne, we also demonstrated that the basis set optimization influences binding energies and atomic charges of an adsorbent and a surface.

Еще

Density functional theory, atomic-like basis set, projector-augmentedwave method, adsorption

Короткий адрес: https://sciup.org/147232813

IDR: 147232813   |   DOI: 10.14529/mmph190206

Список литературы Importance of atomic-like basis set optimization for DFT modelling of nanomaterials

  • Jones, R.O. Density functional theory: Its origins, rise to prominence, and future / R.O. Jones // Reviews of Modern Physics. - 2015. - Vol. 87. - Issue 3. - P. 897-923.
  • The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals / S. Haastrup, M. Strange, M. Pandey et al. // 2D Materials. - 2018. - T. 5, № 4. - C. 36.
  • Бажанова, З.Г. Поведение системы Fe-S при высоких давлениях и состав ядра Земли / З.Г. Бажанова, В.В. Ройзен, А.Р. Оганов // УФН. - 2017. - Т. 187, № 10. - С. 1105-1113.
  • Iterative minimization techniques for ab initio total-energy calculations - molecular-dynamics and conjugate gradients / M.C. Payne, M.P. Teter, D.C. Allan et al. // Reviews of Modern Physics. - 1992. - Vol. 64. - Issue 4. - P. 1045-1097.
  • Numerical atomic orbitals for linear-scaling calculations / J. Junquera, O. Paz, D. Sanchez-Portal et al. // Physical Review B. - 2001. - Vol. 64. - Issue 23. - P. 9.
  • Kurlov, A.S. Tungsten Carbides: Structure, Properties and Application in Hardmetals / A.S. Kurlov, A.I. Gusev. - Cham-Heidelberg-NY: Springer, 2013. - 242 с.
  • The SIESTA method for ab initio order-N materials simulation / J.M. Soler, E. Artacho, J.D. Gale et al. // Journal of Physics: Condensed Matter. - 2002. - Vol. 14, no. 11. - P. 2745.
  • Ordejon, P. Self-consistent order-N density-functional calculations for very large systems / P. Ordejon, E. Artacho, J.M. Soler // Physical Review B. - 1996. - Vol. 53, Issue 16. - P. 10441-10444.
  • Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set / G. Kresse, J. Furthmuller // Physical Review B. - 1996. - Vol. 54. - Issue 16. - P. 11169-11186.
  • Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method / G. Kresse, D. Joubert // Physical Review B. - 1999. - Vol. 59. - Issue 3. - P. 1758-1775.
  • Perdew, J.P. Generalized gradient approximation made simple / J.P. Perdew, K. Burke, M. Ernzerhof // Physical Review Letters. - 1996. - Vol. 77. - Issue 18. - P. 3865-3868.
  • Linear-scaling ab-initio calculations for large and complex systems / E. Artacho, D. Sanchez-Portal, P. Ordejon et al. // Physica Status Solidi B. - 1999. - Vol. 215. - Issue 1. - P. 809-817.
  • Systematic pseudopotentials from reference eigenvalue sets for DFT calculations: Pseudopotential files / P. Rivero, V.M. Garcia-Suarez, D. Pereniguez et al. // Data in Brief. - 2015. - Vol. 3. - P. 21-23.
  • Abinit's Fritz-Haber-Institute (FHI) pseudo database. [Электронный ресурс]. Режим доступа: http://departments.icmab.es/leem/siesta/Databases/Pseudopotentials/periodictable-intro.html (дата обращения: 25.11.2018.2018).
  • Crystalline-structure of carbine / V.I. Kasatochkin, V.V. Korshak, Y.P. Kudryavtsev et al. // Carbon. - 1973. - Vol. 11. - Issue 1. - P. 70-72.
  • Systematic generation of finite-range atomic basis sets for linear-scaling calculations / E. Anglada, J.M. Soler, J. Junquera et al. // Physical Review B. - 2002. - Vol. 66. - Issue 20. - P. 4.
  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction / S. Grimme // Journal of Computational Chemistry. - 2006. - Vol. 27. - Issue 15. - P. 1787-1799.
  • Henkelman, G. A fast and robust algorithm for Bader decomposition of charge density / G. Henkelman, A. Arnaldsson, H. Jonsson // Computational Materials Science. - 2006. - Vol. 36. - Issue 3. - P. 354-360.
Еще
Статья научная