Иммунокомпетентные клетки - важный фактор опухолевого микроокружения при раке молочной железы

Автор: Гетажеева Л.А., Рябчиков Д.А., Чулкова С.В., Поликарпова С.Б., Тупицын Н.Н., Хоченков Д.А., Чантурия Н.В.

Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr

Рубрика: Обзоры

Статья в выпуске: 3 т.20, 2020 года.

Бесплатный доступ

Рак молочной железы (РМЖ) является самым распространенным злокачественным новообразованием у женщин во всем мире. Несмотря на достигнутые успехи в диагностике РМЖ и новейшие лекарственные режимы лечения, остается еще целый ряд нерешенных задач, связанных с развитием опухолевой резистентности и, как следствие, прогрессированием заболевания. Одним из факторов, определяющих устойчивость опухоли к современным методам лечения, является ее способность уклоняться от иммунного ответа. Присутствие эффекторных клеток иммунитета в опухоли характеризует степень напряженности иммунного противоопухолевого ответа и может определять успешность лекарственного лечения, которое включает в себя как стандартную химиотерапию, так и таргетную терапию и терапию ингибиторами контрольных точек иммунитета.

Еще

Рак молочной железы, опухоль-инфильтрирующие лимфоциты, миелоидные супрессорные клетки, опухоль-ассоциированные макрофаги, неоадъювантная теарпия

Короткий адрес: https://sciup.org/149132158

IDR: 149132158

Список литературы Иммунокомпетентные клетки - важный фактор опухолевого микроокружения при раке молочной железы

  • Demaria S., Pikarsky E., Karin M., et al. Cancer and inflammation: promise for biologic therapy. J Immunother. 2010. V. 33. No. 4. P. 335-351. doi:10.1097/CJI.0b013e3181d32e74.
  • Mittal D., Gubin M.M., Schreiber R.D., Smyth M.J. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014. V. 27. P. 16-25. doi:10.1016/j.coi.2014.01.004.
  • Gu-Trantien C., Loi S., Garaud S., et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013. V. 123. No. 7. P. 2873-2892. doi:10.1172/JCI67428.
  • Kawai O., Ishii G., Kubota K., et al. Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008. V. 113. No. 6. P 1387-1395.
  • Hornychova H., Melichar B., Tomsova M., et al. Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer Invest. 2008. V. 26. No. 10. P. 1024-1031. doi:10.1080/0735790080209816.
  • Schreiber R.D., Old L.J., Smyth M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011. V. 331. No. 6024. P. 1565-1570.
  • Seo A.N., Lee H.J., Kim E.J., et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013. V. 109. No. 10. P. 2705-2713. doi:10.1038/bjc.2013.6341111.
  • Ruffell B., Au A., Rugo H.S., et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012. V. 109. No. 8. P. 2796-2801. doi:10.1073/pnas.1104303108.
  • Cimino-Mathews A., Ye X., Meeker A., et al. Metastatic triple-negative breast cancers at first relapse have fewer tumor-infiltrating lymphocytes than their matched primary breast tumors: a pilot study. Hum Pathol. 2013. V. 44. No. 10. P. 2055-2063. doi:10.1016/j.humpath.2013.03.010.
  • Gobert M., Treilleux I., Bendriss-Vermare N., et al. Regulatory T Cells Recruited through CCL22/CCR4 Are Selectively Activated in Lymphoid Infiltrates Surrounding Primary Breast Tumors and Lead to an Adverse Clinical Outcome. Cancer Res. 2009. V. 69. No. 5. P. 20002009. doi:10.1158/0008-5472.CAN-08-2360.
  • Ismael G., Hegg R, Muehlbauer S., et al. Subcutaneous versus intravenous administration of (neo)adjuvant trastuzumab in patients with HER2-positive, clinical stage I-III breast cancer (HannaH study): a phase 3, open-label, multicentre, randomised trial. Lancet Oncol. 2012. V. 13. No. 9. P. 869-878. doi:10.1016/S1470-2045(12)70329.
  • Bear H.D., Tang G., Rastogi P., et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med. 2012. V. 366. No. 4. P. 310-320. doi:10.1056/NEJMoa1111097.
  • Yamaguchi R., Tanaka M., Yano A., et al. Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum Pathol. 2012. V. 43. No. 10. P. 1688-1694. doi:10.1016/j.humpath.2011.12.013.
  • Denkert C., Loibl S., Noske A., et al. Tumor-Associated Lymphocytes as an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer. J Clin Oncol. 2009. V. 28. No. 1. P. 105-113. doi:10.1200/Jœ.2009.23.7370.
  • MahmoudS.M.A., Paish E.C., Powe D.G., et al. Tumor-Infiltrating CD8+ Lymphocytes Predict Clinical Outcome in Breast Cancer. J Clin Oncol. 2011. V. 29. No. 15. P. 1949-1955. doi:10.1200/Jœ.2010.30.5037.
  • Ono M., Tsuda H., Shimizu C., et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012. V. 132. No. 3. P. 793-805. doi:10.1007/s10549-011-1554-7.
  • West N.R., Milne K., Truong P.T., et al. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011. V. 13. No. 6. Article ID R126. doi:10.1186/bcr3072.
  • Oda N., Shimazu K., Naoi Y., et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012. V. 136. No. 1. P. 107-116. doi:10.1007/s10549-012-2245-8.
  • Issa-Nummer Y., Darb-Esfahani S., Loibl S., et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer--a substudy of the neoadjuvant GeparQuinto trial. PloS One. 2013. V. 8. No. 12. Article ID e79775. doi:10.1371/journal.pone.0079775.
  • Ladoire S., Arnould L., Apetoh L., et al. Pathologic Complete Response to Neoadjuvant Chemotherapy of Breast Carcinoma Is Associated with the Disappearance of Tumor-Infiltrating Foxp3+ Regulatory T Cells. Clin Cancer Res. 2008. V. 14. No. 8. P. 2413-2420. doi:10.1158/1078-0432.CCR-07-4491.
  • Ladoire S., Mignot G., Dabakuyo S., et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. J Pathol. 2011. V. 224. No. 3. P. 389-400. doi:10.1002/path.2866.
  • Liu J., Huang L., Tian X., et al. Magnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy. Int J Nanomedicine. 2016. V. 12. P. 1-14. doi:10.2147/IJN.S118938.
  • Demir L., Yigit S., Ellidokuz H., et al. Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoralFoxp3+Tregs. Clin Exp Metastasis. 2013. V. 30. No. 8. P. 1047-1062. doi:10.1007/s10585-013-9602-9.
  • Song Q., Ren J., Zhou X., et al. Circulating CD8+CD28- suppressor T cells tied to poorer prognosis among metastatic breast cancer patients receiving adoptive T-cell therapy: A cohort study. Cytotherapy. 2018. V. 20. No. 1. P. 126-133. doi:10.1016/j.jcyt.2017.08.018.
  • Lewis C.E., Pollard J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006. V. 66. P. 605-612. doi:10.1158/0008-5472.CAN-05-4005.
  • Mantovani A., Marchesi F., Malesci A., et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017. V. 14. No. 7. P. 399-416. doi:10.1038/nrclinonc.2016.217.
  • Choi J., Gyamfi J., Jang H., Koo J.S. The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol. 2018. V. 33. No. 2. P. 133-145. doi:10.14670/HH-11-916.
  • Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009. V. 9. No. 3. P. 162-174. doi:10.1038/nri2506.
  • Anani W., Shurin M.R. Targeting Myeloid-Derived Suppressor Cells in Cancer. Adv Exp Med Biol. 2017. V. 1036. P. 105-128. doi:10.1007/978-3-319-67577-0_8.
  • Finke J.H., Rayman P.A., Ko J.S., et al. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J Sudbury Mass. 2013. V. 19. No. 4. P. 353364. doi:10.1097/PPO.0b013e31829da0ae.
  • Diaz-Montero C.M., Salem M.L., Nishimura M.I., et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009. V. 58. No. 1. P. 49-59. doi:10.1007/s00262-008-0523 -4.
  • Wesolowski R., Duggan M.C., Stiff A., et al. Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer. Cancer Immunol Immunother. 2017. V. 66. No. 11. P. 1437-1447. doi:10.1007/s00262-017-2038-3.
Еще
Статья научная