FRP helical micro screw pile with cast iron pile cap: review

Автор: Nurmukhametov Renat Rustamovich, Vatin Nikolai Ivanovich, Mirsayapov Ilizar Talgatovich, Vasyutkin Evgeny Sergeevich, Burin Dmitriy Leonidovich, Vasyutkin Sergey Fedorovich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (89), 2020 года.

Бесплатный доступ

Calculation method of pipes’ FRP sections is proposed. Comparison of two options of piles’ bearing capacity calculations is made. Calculated bearing strength of the pipe’s sections for an axial load are compared to the results of site tests made earlier and soil’s bearing strength. Conclusions are made that existing calculation methods of soil’s bearing strength underneath helical piles are too conservative. Research provides results of bearing strength installed to weak clay helical fiberglass micropile. Pile was designed, produced and provided by Composite Group LLC. Pile is made with pultruded fibre reinforced polymer pipe and screw produced with cast iron. Screw is glued to the FRP pipe by epoxy. In addition rivets strengthen connection detail. This structure is stable for corrosion, ground electricity. FRP screw pile has small weight and high strength.

Еще

Auger piles, fiberglass, composite piles, frp piles, micro piles, screw piles, fibre reinforced polymer, helical piles, soft clay

Короткий адрес: https://sciup.org/143172523

IDR: 143172523   |   DOI: 10.18720/CUBS.89.3

Список литературы FRP helical micro screw pile with cast iron pile cap: review

  • Ponomarev A.B., Sychkina E.N. On the Stress-Strain State and Load-Bearing Strength of Argillite-Like Clays and Sandstones. Soil Mechanics and Foundation Engineering. 2018. 3(55). Pp. 141-145. DOI: 10.1007/s11204-018-9517-1
  • Bartolomei A.A., Ponomarev A.B. Experimental investigations and prediction of settlements of conical-pile foundations. Soil Mechanics and Foundation Engineering. 2001. 2(38). Pp. 42-50. :1010422029681. DOI: 10.1023/A
  • Polishchuk A.I., Maksimov F.A. Improving the Design of Screw Piles for Temporary Building Foundations. Soil Mechanics and Foundation Engineering. 2016. 4(53). Pp. 1-4. DOI: 10.1007/s11204-016-9399-z
  • Pat. RU2 446 246 S2 RF, MPK E01D 21/00, Sposob sborki inventarnogo nizkovodnogo mosta na vintovykh svayakh nadvizhkoy proletnogo stroyeniya.
  • Pat. RU 187 577 RF, MPK E02D 5/52, E02D 5/56, Vintovaya teleskopicheskaya svaya iz stekloplastikovykh trub s opornym nagolovnikom.
  • Pat. RU 160 663 RF, MPK E02D 5/56, Odnovitkovaya vintovaya stekloplastikovaya svaya.
  • Pat RU 191 864 RF, MPK E02D 5/52, E01D 19/14, Golovnaya teleskopicheskaya vintovaya svaya iz stekloplastikovykh trub dlya kustovogo inventarnogo ledoreza.
  • Pat. RU145 340, Pat. RU 145 340 RF, MPK E02D 5/56, Odnovitkovaya vintovaya stekloplastikovaya svaya.
  • Garifullin M.R., Barabash A. V., Naumova E.A., Zhuvak O. V., Jokinen T., Heinisuo M. Surrogate modeling for initial rotational stiffness of welded tubular joints. Magazine of Civil Engineering. 2016. 3(63). Pp. 53-76.
  • DOI: 10.5862/MCE.63.4
  • Vatin N.I., Nazmeeva T., Guslinscky R. Problems of cold-bent notched c-shaped profile members. Advanced Materials Research. 2014. (941-944). Pp. 1871-1875.
  • DOI: 10.4028/www.scientific.net/AMR.941-944.1871
  • Garifullin M., Bronzova M.K., Heinisuo M., Mela K., Pajunen S. Cold-formed RHS T joints with initial geometrical imperfections. Magazine of Civil Engineering. 2018. 4(80). Pp. 81-94.
  • DOI: 10.18720/MCE.80.8
  • Trubina D., Abdulaev D., Pichugin E., Rybakov V. Effect of constructional measures on the total and local loss stability of the thin-walled profile under transverse bending. Applied Mechanics and Materials. 2014. (633-634). Pp. 982-990.
  • DOI: 10.4028/www.scientific.net/AMM.633-634.982
  • Bartolomey A.A., Kleveko V.I., Ofrikhter V.G., Ponomaryov A.B., Bogomolov A.N. The use of synthetic materials in the highway engineering in the Urals. Geotechnical engineering for transportation infrastructure. Proceedings of the 12th European conference on soil mechanics and geotechnical engineering, Amsterdam, June 1999. Vol. 2. 1999. Pp. 1197-1202.
  • Pando M.A., Ealy C.D., Filz G.M., Lesko J.J., Hoppe E.J. A laboratory and field study of composite pile for bridge substructures. US Department of Transportation. 2006.
  • Pearson Pilings URL: http://www.pearsonpilings.com.
  • CMIC Sheet Piling. URL: http://cmisheetpiling.com.
  • Guades E.J., Sirimanna C.S., Aravinthan T., Islam M.M. Behaviour of fibre composite pile under axial compression load. Incorporating Sustainable Practice in Mechanics of Structures and Materials - Proceedings of the 21st Australian Conference on the Mechanics of Structures and Materials. 2011. Pp. 457-462.
  • DOI: 10.1201/b10571-81
  • Iskander M.G., Hanna S., Stachula A. Driveability of FRP composite piling. Journal of Geotechnical and Geoenvironmental Engineering. 2001. :2(169).
  • DOI: 10.1061/(ASCE)1090-0241(2001)127
  • GOST 32659-2014 (ISO 14130-:1997). Kompozity polimernyye. Metody ispytaniy. Opredeleniye kazhushchegosya predela prochnosti pri mezhsloynom sdvige metodom ispytaniya korotkoy balki2015.
  • DOI: 10.1017/CBO9781107415324.004
  • Giraldo Valez J., Rayhani M.T. Axial and lateral load transfer of fibre-reinforced polymer (FRP) piles in soft clay. International Journal of Geotechnical Engineering. 2017. 2(11). Pp. 149-155.
  • DOI: 10.1080/19386362.2016.1198109
  • Heinz R. Plastic piling. Civil engineering ASCE. 1993.
  • Iskander M.G., Hassan M. State of the practice review in FRP composite piling. Journal of Composites for Construction. 1998. :3(116).
  • DOI: 10.1061/(ASCE)1090-0268(1998)2
  • Zyka K., Mohajerani A. Composite piles: A review2016.
  • Bedford Technology Pty Ltd. URL: http://www.plasticboards.com.
  • Vasyutkin Ye.S., Vasyutkin S.F. Trekhmernoye proyektirovaniye konstruktsii, tekhnologicheskoy osnastki i opyt vnedreniya kompozitnykh sistem dlya vodootvedeniya v dorozhnom stroitelstve. Doklady nauchno-prakticheskoy konferentsii "Kompozitnyye materialy v stroitelstve obyektov transportnoy infrastruktury", posvyashchennoy 145-letiyu Patona Ye.O. 2015. Pp. 29-32.
  • Vasyutkin Ye.S., Savkin D.A. Opyt sozdaniya i primeneniya kompozitnykh vodootvodnykh sistem na mostovykh sooruzheniyakh. Doklady nauchno-prakticheskoy konferentsii "kompozitnyye materialy v stroitelstve obyektov transportnoy infrastruktury", posvyashchennoy 145-letiyu Patona Ye.O. 2015. Pp. 32-35.
  • Kvitko A.V. Opyt razrabotki i ispytaniy konstruktsii kompozitnoy vintovoy svai diametrom 100 mm. Doklady nauchno-prakticheskoy konferentsii kompozitnyye materialy v stroitelstve obyektov transportnoy infrastruktury, posvyashchennoy 145-letiyu Patona Ye.O. 2015. Pp. 56.
  • Nikolishin I. Fundament na vintovykh svayakh. M.: Izdatelskiye resheniya, 2018.
  • Kvitko A.V. Rezultaty ispytaniy kompozitnykh stekloplastikovykh svay. Geotekhnika. 2015. 53(6). Pp. 88-93.
  • Mirsayapov I.T., Koroleva I. V. Clayey soils rheological model under triaxial regime loading. Geotechnical Engineering for Infrastructure and Development - Proceedings of the XVI European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2015. 2015. (6). Pp. 3249-3254.
  • Mirsayapov I.T., Koroleva I. V. Prediction of deformations of foundation beds with a consideration of long-term nonlinear soil deformation. Soil Mechanics and Foundation Engineering. 2011. 4(48). Pp. 148-157.
  • DOI: 10.1007/s11204-011-9142-8
  • STO 56947007- 29.120.95- 050-2010. Normy proyektirovaniya fundamentov iz vintovykh svay 2010.
  • Zhelezkov V.N., Romanov P.I., Kachanovskaya L.I., Yermoshina M.S. Razrabotka Normativnogo Dokumenta "Proyektirovaniye I Ustroystvo Fundamentov Na Vintovykh Svayakh". Vestnik Grazhdanskikh Inzhenerov. 2008. 2 (15). Pp. 42-46.
  • Nurmukhametov R.R. Reduction of water saturated clayey soils' deflections by reinforcement. Construction of Unique Buildings and Structures. 2019. 84(9). Pp. 22-33.
  • DOI: 10.18720/CUBS.84.2
  • Nurmukhametov R.R. Deformability of water saturated clay reinforced by vertical elements. Alfabuild. 2019. 11(4). Pp. 54-69.
Еще
Статья научная