Fire resistance of thin-walled cold-formed steel structures

Автор: Bronzova M.K., Garifullin M.R.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 3 (42), 2016 года.

Бесплатный доступ

There is an increasing demand for cold-formed thin-walled steel structures on the building market nowadays. Owing to the assembly simplicity, materials’ cheapness, high ecological standard, recycling, reuse potential, and other numerous advantages of such structures are widely employed in both office and residential buildings. The temperature of thin-walled structures increases rapidly as a consequence of the high section factor (measurement of the fire-exposed area to the heated volume), which creates the demand for a durable fire safety system, one of the fundamental requirements of the building safety. Although, several sufficient researches have been undertaken, there is still no strict performance-based fire design for cold-formed steel systems due to the lack of data. This paper compiles the existing works on the cold-formed thin-walled structures’ fire performance, including numerical studies and experiments with mechanical and thermal properties of complete structures, purlins, joints (bolted, screwed, nailed, riveted etc.), plates, tubular structures, new calculation methods, new protective materials that are being used, such as intumescent coatings and etc.

Еще

Frame building, foam concrete, insulation, cold-formed steel, fire resistancy

Короткий адрес: https://sciup.org/14322321

IDR: 14322321

Список литературы Fire resistance of thin-walled cold-formed steel structures

  • B.W. Schafer, Cold-formed steel structures around the world: A review of recent advances in applications, analysis and design, Steel Constr. 4(3) (2011) 141-149.
  • J. Norgaard, M.A.O. Mydin, Fundamental Behaviour of Cold-formed Thin-walled Steel Structures at Elevated Temperatures, Eur. Res. 65(12-2) (2013) 2870.
  • M. Garifullin, M. Bronzova, A. Sinelnikov, N. Vatin, Buckling analysis of cold-formed C-shaped columns with reticular-stretched perforations, Interdiscip. Theory Pract. 7 (2015) 163-169.
  • M. Veljkovic, B. Johansson, Thin-walled steel columns with partially closed cross-section: Tests and computer simulations, J. Constr. Steel Res. 64(7-8) (2008) 816-821.
  • M. Veljkovic, B. Johansson, Design of thin-walled steel column with partially closed cross-section, Proceedings of the International Colloquium on Stability and Ductility of Steel Structures, SDSS 2006, 2006, pp. 639-646.
  • D. Trubina, D. Abdulaev, E. Pichugin, V. Rybakov, M. Garifullin, O. Sokolova, Comprasion Of The Bearing Capacity Of LST-Profile Depending On The Thickness Of Its Elements, Appl. Mech. Mater. 725-726 (2015) 752-757.
  • N. Vatin, A. Sinelnikov, M. Garifullin, D. Trubina, Simulation of Cold-Formed Steel Beams in Global and Distortional Buckling, Appl. Mech. Mater. 633-634 (2014) 1037-1041.
  • D. Trubina, D. Abdulaev, E. Pichugin, M. Garifullin, The Loss of Local Stability of Thin-Walled Steel Profiles, Appl. Mech. Mater. 633-634 (2014) 1052-1057.
  • M. Garifullin, D. Trubina, N. Vatin, Local buckling of cold-formed steel members with edge stiffened holes, Appl. Mech. Mater. 725-726 (2015) 697-702.
  • N.I. Vatin, J. Havula, L. Martikainen, A. Sinelnikov, A. V. Orlova, S. V. Salamakhin, Thin-Walled Cross-Sections and their Joints: Tests and FEM-Modelling, Adv. Mater. Res. 945-949 (2014) 1211-1215.
  • N. Vatin, J. Havula, L. Martikainen, A. Sinelnikov, L.L. Shurovkina, Reticular-Stretched Thermo-Profile: Buckling of the Perforated Web as a Single Plate, Appl. Mech. Mater. 725-726 (2015) 722-727.
  • A. Anis, T. Björk, S. Heinilä, A finite element approach to predict the stress concentration factors in cold formed corners, Int. J. Mech. Mechatronics Eng. 12(4) (2012) 94-98.
  • S. Heinilä, T. Björk, G. Marquis, The influence of residual stresses on the fatigue strength of cold-formed structural tubes, ASTM Spec. Tech. Publ. 1508 STP (2009) 200-215.
  • S. Heinilä, T. Björk, G. Marquis, R. Ilvonen, Numerical simulation of cold forming and its effect on the fatigue life of cold-formed rectangular structural tubes, ECCOMAS 2004 -European Congress on Computational Methods in Applied Sciences and Engineering, 2004,
  • M. Garifullin, U. Nackenhorst, Computational Analysis of Cold-formed Steel Columns with Initial Imperfections, Procedia Eng. 117 (2015) 1078-1084.
  • M. Al Ali, M. Tomko, I. Demjan, V. Kvočák, Thin-Walled Cold-Formed Compressed Steel Members and the Problem of Initial Imperfections, Procedia Eng. 40 (2012) 8-13.
  • M. Al Ali, M. Tomko, I. Demjan, V. Kvocak, Analysis of the initial imperfections effect on the thin-walled cold-formed compressed steel members, Komunikacie. 14(4) (2012) 83-87.
  • D. Ungermann, S. Lübke, B. Brune, Tests and design approach for plain channels in local and coupled local-flexural buckling based on eurocode 3, Thin-Walled Struct. 81 (2014) 108-120.
  • B. Brune, T. Peköz, Design of cold-formed steel members -comparison of EN 1993-1-3 and Direct Strength Method, Steel Constr. 6(2) (2013) 82-94.
  • R. Peters, A. Sumpf, D. Ungermann, C. Rüsse, W. Fricke, C. Robert, Laserstrahlgeschweißte T-Stoß-Verbindungen in Stahlhohlplatten, Stahlbau. 84(9) (2015) 643-649.
  • D. Ungermann, S. Lübke, Innovative einseitige Verankerung von Sandwichelementen, Stahlbau. 81(12) (2012) 912-915.
  • O. Tusnina, A Finite Element Analysis of Cold-Formed Z-Purlins Supported by Sandwich Panels, Appl. Mech. Mater. 467 (2014) 398-403.
  • O. Tusnina, An Influence of the Mesh Size on the Results of Finite Element Analysis of Z-Purlins Supported by Sandwich Panels, Appl. Mech. Mater. 475-476 (2014) 1483-1486.
  • M. Heinisuo, J. Lahdenmaa, T. Jokinen, Experimental research on modular thin-walled steel structures, Proceedings of the 12th International Conference on Steel, Space and Composite Structures, 2014, pp. 85-97.
  • A.R. Tusnin, Bearing ability of a parallel flange beam with action of twisting loading, Montaz. i Spetsial'nye Rab. v Stroit. 2 (2003) 4-7.
  • A.R. Tusnin, Matrix of rigidity of a thin-walled core with discrepancy of centers of gravity and bend, Montaz. i Spetsial'nye Rab. v Stroit. 4 (2003) 12-14.
  • A.R. Tusnin, Carrying ability of central compressed thin-walled cores of an opened structure with twisting action, Montaz. i Spetsial'nye Rab. v Stroit. 9 (2003) 2-4.
  • A.R. Tusnin, The accuracy of calculating a thin-wall rod of exposed section by a finite element method, Promyshlennoe i Grazhdanskoe Stroit. 6 (2003) 59-61.
  • A.R. Tusnin, Thin-walled final element for account of rod designs, Montaz. i Spetsial'nye Rab. v Stroit. 3 (2003) 2-4.
  • A. Danilov, O. Tusnina, The joints of cold-formed purlins, J. Appl. Eng. Sci. 12(2) (2014) 153-158.
  • M. Garifullin, N. Vatin, Buckling analysis of thin-walled cold-formed beams -short review, Constr. Unique Build. Struct. 6(21) (2014) 32-57.
  • N. Vatin, J. Havula, L. Martikainen, A. Sinelnikov, A. Orlova, S. Salamakhin, Buckling force of the thin-walled cross-sections and shear resistance of their joints: tests and FEM-modelling, Proceedings of the International Conference „Innovative Materials, Structures and Technologies”, 2014, pp. 187-192.
  • M. Al Ali, Compressed Thin-Walled Cold-Formed Steel Members with Closed Cross-Sections, Adv. Mater. Res. 969 (2014) 93-96.
  • G. Belyj, E. Serov, Particular Features And Approximate Estimation Of Steel Structures Service Life In Buildings And Facilities, World Appl. Sci. J. 23(13) (2013) 160-164.
  • V.K. Vostrov, A.A. Vasilkin, Optimization of heights of zones of a wall of the tank, Montaz. i Spetsial'nye Rab. v Stroit. 11 (2005) 37-39.
  • V. Rybakov, A. Sergey, Mathematical Analogy Between Non-Uniform Torsion and Transverse Bending of Thin-Walled Open Section Beams, Appl. Mech. Mater. 725-726 (2015) 746-751.
  • V. Rybakov, A. Panteleev, G. Sharbabchev, E. Epshtein, Snow-Retaining System as a Temporary Decision for Providing of the Suitable Temperature and Humidity Level of Pitched Roofs, Appl. Mech. Mater. 584-586 (2014) 1876-1880.
  • M. Veljkovic, B. Johansson, Light steel framing for residential buildings, Thin-Walled Struct. 44(12) (2006) 1272-1279.
  • S. Gunalan, Structural behaviour and design of cold-formed steel wall systems under fire conditions, PhD thesis. Queensl. Univ. Technol. (2011).
  • G. Kashevarova, P. Kosykh, Influence Analysis of Cold Formed Steel Members on Thermal Characteristics of Building Envelopes, Appl. Mech. Mater. 670-671 (2014) 466-473.
  • L. Pyl, L. Schueremans, W. Dierckx, I. Georgieva, Fire safety analysis of a 3D frame structure based on a full-scale fire test, Thin-Walled Struct. 61 (2012) 204-212.
  • W.L. Grosshandler, Fire Resistance Proficiency Testing of Gypsum/Steel-Stud Wall Assemblies, Technical Memorandum of PWRI 4075, Wind and Seismic Effects, US/Japan Natural Resources Development Program (UJNR), Joint Meeting, 39th. Public Works Research Institute, Tsukuba, Japan, 2007,.
  • A.D. Ariyanayagam, M. Mahendran, Fire tests of load bearing steel stud walls exposed to real building fires, 7th International Conference on Structures in Fire, 2012, pp. 105-114.
  • S. Gunalan, M. Mahendran, Finite element modelling of load bearing cold-formed steel wall systems under fire conditions, Eng. Struct. 56 (2013) 1007-1027.
  • C.R. Barnett, Replacing international temperature-time curves with BFD curve, Fire Saf. J. 42(4) (2007) 321-327.
  • K. Poologanathan, M. Mahendran, Numerical modelling of load bearing LSF Walls under fire conditions, Structures in Fire-SIF'2012: Proceedings of the 7th International Conference on Structures in Fire, 2012, pp. 205-214.
  • M. Feng, Y.C. Wang, J.M. Davies, Axial strength of cold-formed thin-walled steel channels under non-uniform temperatures in fire, Fire Saf. J. 38(8) (2003) 679-707.
  • M. Feng, Y.C. Wang, An experimental study of loaded full-scale cold-formed thin-walled steel structural panels under fire conditions, Fire Saf. J. 40(1) (2005) 43-63.
  • S. Gunalan, M. Mahendran, Fire Tests of Cold-formed Steel Wall Systems, Australasian Structural Engineering Conference 2012, 2012,.
  • P. Kolarkar, M. Mahendran, Experimental studies of gypsum plasterboards and composite panels under fire conditions, Fire Mater. 38(1) (2014) 13-35.
  • P.N. Kolarkar, Structural and thermal performance of cold-formed steel stud wall systems under fire conditions, PhD thesis, Queensl. Univ. Technol..
  • P.N. Kolarkar, M. Mahendran, Thermal performance of plasterboard lined steel stud walls, 19th International Specialty Conference on Recent Research and Developments in Cold-Formed Steel Design and Construction, 2008, pp. 517-530.
  • S. Gunalan, P. Kolarkar, M. Mahendran, Experimental study of load bearing cold-formed steel wall systems under fire conditions, Thin-Walled Struct. 65 (2013) 72-92.
  • P. Kolarkar, M. Mahendran, Experimental studies of non-load bearing steel wall systems under fire conditions, Fire Saf. J. 53 (2012) 85-104.
  • W. Chen, J. Ye, Y. Bai, X.-L. Zhao, Full-scale fire experiments on load-bearing cold-formed steel walls lined with different panels, J. Constr. Steel Res. 79 (2012) 242-254.
  • M.A. Sultan, Effect of insulation in the wall cavity on the fire resistance rating of full-scale asymmetrical (1x2) gypsum board protected wall assemblies, Proceedings of the International Conference on Fire Research and Engineering, 1995, pp. 545-550.
  • D.J. Hopkin, T. Lennon, J. El-Rimawi, V. V. Silberschmidt, A numerical study of gypsum plasterboard behaviour under standard and natural fire conditions, Fire Mater. 36(2) (2012) 107-126.
  • S. Kesawan, M. Mahendran, Predicting the performance of LSF walls made of hollow flange channel sections in fire, Thin-Walled Struct. 98 (2016) 111-126.
  • S. Kesawan, M. Mahendran, Fire tests of load-bearing LSF walls made of hollow flange channel sections, J. Constr. Steel Res. 115 (2015) 191-205.
  • J.A. Diez Albero, T. Tiainen, K. Mela, M. Heinisuo, Structural analysis of tubular truss in fire, Tubular Structures -Proceedings of the 15th International Symposium on Tubular Structures, ISTS 2015, 2015, pp. 181-187.
  • A.R. Tusnin, A.I. Danilov, V.P. Vershinin, V. V. Vershinin, Fire Resistance Calculation for a Floor Structure with the Use of Profiled Sheeting, Ind. Civ. engeneering. 12 (2013) 71-73.
  • T. Ranawaka, M. Mahendran, Experimental study of the mechanical properties of light gauge cold-formed steels at elevated temperatures, Fire Saf. J. 44(2) (2009) 219-229.
  • H.D. Craveiro, J.P.C. Rodrigues, A. Santiago, L. Laím, Review of the high temperature mechanical and thermal properties of the steels used in cold formed steel structures -The case of the S280 Gd+Z steel, Thin-Walled Struct. 98 (2016) 154-168.
  • S. Gunalan, M. Mahendran, Experimental investigation of post-fire mechanical properties of cold-formed steels, Thin Walled Struct. 84 (2014) 241-254.
  • M. Salminen, M. Heinisuo, Numerical analysis of thin steel plates loaded in shear at non-uniform elevated temperatures, J. Constr. Steel Res. 97 (2014) 105-113.
  • L. Laím, J.P.C. Rodrigues, H.D. Craveiro, Flexural behaviour of axially and rotationally restrained cold-formed steel beams subjected to fire, Thin-Walled Struct. 98 (2016) 39-47.
  • S. Cheng, L. Li, B. Kim, Buckling analysis of cold-formed steel channel-section beams at elevated temperatures, J. Constr. Steel Res. 104 (2015) 74-80.
  • A. Santiago, L.S. da Silva, P.V. Real, M. Veljkovic, Numerical study of a steel sub-frame in fire, Comput. Struct. 86(15-16) (2008) 1619-1632.
  • N. Dolamune Kankanamge, M. Mahendran, Behaviour and design of cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures, Thin-Walled Struct. 61 (2012) 213-228.
  • A. Shahbazian, Y.C. Wang, Calculating the global buckling resistance of thin-walled steel members with uniform and non-uniform elevated temperatures under axial compression, Thin-Walled Struct. 49(11) (2011) 1415-1428.
  • T. Ranawaka, M. Mahendran, Numerical modelling of light gauge cold-formed steel compression members subjected to distortional buckling at elevated temperatures, Thin-Walled Struct. 48(4-5) (2010) 334-344.
  • S. Gunalan, Y. Bandula Heva, M. Mahendran, Local buckling studies of cold-formed steel compression members at elevated temperatures, J. Constr. Steel Res. 108 (2015) 31-45.
  • J.C. Batista Abreu, B.W. Schafer, Stability and load-carrying capacity of cold-formed steel compression members at elevated temperatures, Structural Stability Research Council Annual Stability Conference 2014, SSRC 2014, 2014, pp. 213-229.
  • J.C. Batista Abreu, B.W. Schafer, Stability of cold-formed steel compression members under thermal gradients, Structural Stability Research Council Annual Stability Conference 2013, SSRC 2013, 2013, pp. 136-154.
  • J.C.B. Abreu, L.M.C. Vieira Jr, M.H. Abu-Hamd, B.W. Schafer, Review: development of performance-based fire design for cold-formed steel, Fire Sci. Rev. 3(1) (2014) 1-15.
  • W. Wang, V. Kodur, X. Yang, G. Li, Experimental study on local buckling of axially compressed steel stub columns at elevated temperatures, Thin-Walled Struct. 82 (2014) 33-45.
  • A. Byström, J. Sjöström, U. Wickström, D. Lange, M. Veljkovic, Large Scale Test on a Steel Column Exposed to Localized Fire, J. Struct. Fire Eng. 5(2) (2014) 147-160.
  • A. Byström, J. Sjöström, U. Wickström, M. Veljkovic, Large scale test to explore thermal exposure of column exposed to localized fire, Proceedings of the 7th International Conference on Structures in Fire, 2012, pp. 185-194.
  • J.H. Lee, Local Buckling Behaviour and Design of Cold-Formed steel compression members at elevated temperatures, PhD thesis, Queensl. Univ. Technol. (2004).
  • A. Shahbazian, Y.C. Wang, Application of the Direct Strength Method to local buckling resistance of thin-walled steel members with non-uniform elevated temperatures under axial compression, Thin-Walled Struct. 49(12) (2011) 1573-1583.
  • A. Shahbazian, Y.C. Wang, Direct Strength Method for calculating distortional buckling capacity of cold-formed thin-walled steel columns with uniform and non-uniform elevated temperatures, Thin-Walled Struct. 53 (2012) 188-199.
  • A. Shahbazian, Y.C. Wang, Performancebased fire resistance design method for wall panel assemblies using thin-walled steel sections, Struct. Eng. 92(1) (2014) 52-62.
  • A. Shahbazian, Y.C. Wang, A fire resistance design method for thin-walled steel studs in wall panel constructions exposed to parametric fires, Thin-Walled Struct. 77 (2014) 67-76.
  • S. Gunalan, M. Mahendran, Design of LSF wall studs under fire conditions, Steel Innovations Conference, 2013,.
  • A. Shahbazian, Y.C. Wang, A simplified approach for calculating temperatures in axially loaded cold-formed thin-walled steel studs in wall panel assemblies exposed to fire from one side, Thin-Walled Struct. 64 (2013) 60-72.
  • T. Björk, H. Saastamoinen, Capacity of CFRHS X-joints made of double-grade S420 steel, Tubular Structures XIV -Proceedings of the 14th International Symposium on Tubular Structures, ISTS 2012, 2012, pp. 167-176.
  • F. Lopes, A. Santiago, L. Simões da Silva, T. Heistermann, M. Veljkovic, J. Guilherme da Silva, Experimental behaviour of the reverse channel joint component at elevated and ambient temperatures, Int. J. Steel Struct. 13(3) (2013) 459-472.
  • F.C. Lopes, A. Santiago, L.S. Da Silva, T. Heistermann, M. Veljkovic, J.G.S. Da Silva, Behaviour of the reverse channel joint component at elevated temperature, Tubular Structures XIV -Proceedings of the 14th International Symposium on Tubular Structures, ISTS 2012, 2012, pp. 645-651.
  • T. Heistermann, Stiffness of reverse channel connections at room and elevated temperatures, PhD thesis, Luleå Univ. Technol. (2013).
  • J.B.P. Lim, B. Young, Effects of elevated temperatures on bolted moment-connections between cold-formed steel members, Eng. Struct. 29(10) (2007) 2419-2427.
  • Y. Cai, B. Young, Behavior of cold-formed stainless steel single shear bolted connections at elevated temperatures, Thin-Walled Struct. 75 (2014) 63-75.
  • S. Yan, B. Young, Tests of single shear bolted connections of thin sheet steels at elevated temperatures-Part II: Transient state tests, Thin-Walled Struct. 49(10) (2011) 1334-1340.
  • Y.C. He, Y.C. Wang, Load-deflection behaviour of thin-walled plates with a single bolt in shearing, Thin-Walled Struct. 49(10) (2011) 1261-1276.
  • Y.C. He, Y.C. Wang, Load-deflection behavior of thin-walled plates with multiple bolts in shearing, Thin-Walled Struct. 55 (2012) 51-63.
  • Y.C. He, Y.C. Wang, Load-deflection behaviour of thin-walled bolted plates in shear at elevated temperatures, Thin-Walled Struct. 98 (2016) 127-142.
  • W. Lu, Z. Ma, P. Mäkeläinen, J. Outinen, Behaviour of shear connectors in cold-formed steel sheeting at ambient and elevated temperatures, Thin-Walled Struct. 61 (2012) 229-238.
  • W. Lu, P. Mäkeläinen, J. Outinen, Z. Ma, Design of screwed steel sheeting connection at ambient and elevated temperatures, Thin-Walled Struct. 49(12) (2011) 1526-1533.
  • W. Lu, Z. Ma, P. Mäkeläinen, J. Outinen, Design of shot nailed steel sheeting connection at ambient and elevated temperatures, Eng. Struct. 49 (2013) 963-972.
  • G.-Q. Li, J. Han, G.-B. Lou, Y.C. Wang, Predicting intumescent coating protected steel temperature in fire using constant thermal conductivity, Thin-Walled Struct. 98 (2016) 177-184.
  • M. Gravit, V. Gymenyuk, O. Nedryshkin, V. Gumenyuk, O. Nedryshkin, Fire Resistance Parameters for Glazed Non-Load-Bearing Curtain Walling Structures. Extended Application, Procedia Eng. 117 (2015) 114-118.
  • M. Gravit, V. Gumenyuk, M. Sychov, O. Nedryshkin, Estimation of the Pores Dimensions of Intumescent Coatings for Increase the Fire Resistance of Building Structures, Procedia Eng. 117 (2015) 119-125.
  • J.E.J. Staggs, R.J. Crewe, R. Butler. A theoretical and experimental investigation of intumescent behaviour in protective coatings for structural steel, Chemical Engineering Science.Volume 71, 26 March 2012, Pages 239-251.
  • Somayeh Mohammadi, Homeira Shariatpanahi, Faramarz Afshar Taromi. Influence of hybrid functionalized graphite nanoplatelets-tripolyphosphate on improvement in fire protection of intumescent fire resistive coating for steel structures, Polymer Degradation and Stability.Volume 120, October 2015, Pages 135-148
Еще
Статья обзорная