Fiber-reinforced composite workpiece surface quality improvement in machining by milling-cutter with opposite cutting edges using SPH-method simulation

Бесплатный доступ

Unidirectional fiber-reinforced composite workpieces are often machined in practice. During such cutting process stronger fibers are bended more than weaker matrix and an interfacial debonding between them is occurred under machined surface. It deteriorates working properties of composite and so debonding reduction is a vital technological problem. One of the perspective ways to diminish such debonding is to substitute the orthogonal cutting by the oblique one. This decision is confirmed by known practice of milling cutter design. Milling cutters with the continuous helix edges and with interrupted ones with a large tool cutting edge angle are often used. In this case fiber deformations in a cutting zone are significant. To diminish such deformations the hypothesis about efficient use of opposite cutting edges location with a large tool cutting edge inclination is assumed. This hypothesis is checked by using of SPH method with micro-simulation of cutting of metal-matrix composites (steel fibers and aluminum alloy matrix). Johnson-Cook approach is used for both materials. Obtained qualitative deformation pictures confirm this hypothesis. On this basis a new milling cutter design with tool major cutting edges located as a chevron on a cylindrical surface with alternate arrangement is suggested. Computer simulation of such edges operation shows minimal fibers deformations in cutting zone. At the same time, undesired excessive chip packing in a zone between the adjacent cutting edges is not observed. The obtained results are preliminary considering the limited computer model size and no experiment verification made.

Еще

Milling cutter, fiber-reinforced composite, micro-modelling, sph метод, sph calculation method

Короткий адрес: https://sciup.org/147151712

IDR: 147151712   |   DOI: 10.14529/engin160104

Список литературы Fiber-reinforced composite workpiece surface quality improvement in machining by milling-cutter with opposite cutting edges using SPH-method simulation

  • Sheikh-Ahmad J.Y. Machining of polymer composites. Springer, 2009. 315 p. DOI: DOI: 10.1007/978-0-387-68619-6
  • Teti R. Machining of Composite Materials. CIRP Annals -Manufacturing Technology, 2002, vol. 1, iss. 51, no. 2, pp. 611-634. DOI: DOI: 10.1016/S0007-8506(07)61703-X
  • Machining carbon fibre materials. User guide. Sandvik Coromant., 2010. 63 p.
  • Composite Machining Guide. Kennametal., 2012. 22 p.
  • JABRO -Composite machining. SECO, 2011. 40 p.
  • Tooling for Composites and Aerospace Materials. Guhring., 2011. 4 p.
  • Patil A.A., Shende M.D. Experimental and Analytical Investigation of Drilling of Sandwich Composites: A Review. IOSR Journal of Mechanical and Civil Engineering, 2013, vol. 6, iss. 6, pp. 40-52. DOI: DOI: 10.9790/1684-0664052
  • Kahwasha F., Shyhaa I., Maheri A. Modelling of cutting fibrous composite materials current practice. Procedia CIRP, 2015, no. 28, pp. 52-57. DOI: DOI: 10.1016/j.procir.2015.04.010
  • Schorník V., Dana M., Zetková I. The Influence of the Cutting Conditions on the Machined Surface Quality when the CFRP is Machine. Procedia Engineering, 2015, no. 100, pp. 1270-1276. DOI: DOI: 10.1016/j.proeng.2015.01.493
  • Naresh N., Rajasekhar K., Vijaya Bhaskara Reddy P. Parametric analysis of GFRP composites in CNC milling machine using Taguchi method. IOSR Journal of Mechanical and Civil Engineering, 2013, vol. 6, no. 1, pp. 102-111. DOI: DOI: 10.6084/m9.figshare.1051567
  • Mkaddem A., Mansori M.E. Finite element analysis when machining UGF-reinforced PMCs plates: Chip formation, crack propagation and induced-damage. Materials and Design, 2009, vol. 30, pp. 3295-3302 DOI: 10.1016/j.matdes.2008.12.009
  • Zhou L., Huang S.T., Wang D., Yu X.L. Finite element and experimental studies of the cutting process of SiCp/Al composites with PCD tools. International Journal of Advanced Manufacturing Technology, 2011, vol. 52, pp. 619-626 DOI: 10.1007/s00170-010-2776-2
  • Soldani X., Santiuste C., Muñoz-Sánchez A., Miguélez M.H. Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites. Composites: Part A, 2011, vol. 42, pp. 1205-1216 DOI: 10.1016/j.compositesa.2011.04.023
  • Mkaddem A., Demirci I., Mansori M. A micro-macro combined approach using FEM for modelling of machining of FRP composites: Cutting forces analysis. Composites Science and Technology, 2008, vol. 68, pp. 3123-3127 DOI: 10.1016/j.compscitech.2008.07.009
  • Dandekar C.R. Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Composites: Part A, 2009, vol. 40, pp. 1231-1239 DOI: 10.1115/1.2164508
  • Raoa G.V.G., Mahajana P., Bhatnagarb N. Three-dimensional macro-mechanical finite element model for machining of unidirectional-fiber reinforced polymer composites. Materials Science and Engineering, 2008, vol. 498, pp. 142-149 DOI: 10.1016/j.msea.2007.11.157
  • Raoa G.V.G., Mahajan P., Bhatnagar N. Micro-mechanical modeling of machining of FRP composites -Cutting force analysis. Composites Science and Technology, 2007, vol. 46, pp. 579-593 DOI: 10.1016/j.compscitech.2006.08.010
  • Raoa G.V.G., Mahajan P., Bhatnagar N. Machining of UD-GFRP composites chip for-mation mechanism. Composites Science and Technology, 2007, vol. 67, pp. 2271-2281 DOI: 10.1016/j.compscitech.2007.01.025
  • Usui S., Wadel J., Marusich T. Finite Element Modeling of Carbon Fiber Composite Orthogonal Cutting and Drilling. Procedia CIRP, 2014, vol. 14, pp. 211-216 DOI: 10.1016/j.procir.2014.03.081
  • Щуров, И.А. Моделирование процесса резания заготовок из композитных материалов с применением метода конечных элементов/И.А. Щуров, И.С. Болдырев//Вестник ЮУрГУ. Серия: Машиностроение. -2012. -№ 12 (271). -Вып. 19. -С. 143-147.
  • Limido J., Espinosa C., Salaün M., Mabru C., Chieragatti R. High speed machining modelling: SPH method capabilities. 4th Smoothed Particle Hydrodynamics European Research Interest Community (SPHERIC) workshop, 2006.
  • Limido J., Espinosa C., Salaün M., Lacome J.L. SPH method applied to high speed cutting modeling. International Journal of Mechanical Sciences, 2007, vol. 49, iss. 7, pp. 898-908 DOI: 10.1016/j.ijmecsci.2006.11.005
  • Bagci E. 3-D numerical analysis of orthogonal cutting process via mesh-free method. International Journal of the Physical Sciences, 2011, vol. 6, pp. 1267-1282 DOI: 10.5897/IJPS10.600
  • Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, vol. 21, no. 1, pp. 31-48 DOI: 10.1016/0013-7944(85)90052-9
  • Gray III G.T., Chen S.R., Wright W., Lopez M.F. Constitutive Equations for Metals Under Compression at High Strain Rates and High Temperatures. LA-12669-MS, IS-4 Report section. USA, Los Alamos National Laboratory, 1994. 62 p.
  • Arola D., Ramulu M. Orthogonal cutting of fiber-reinforced composites: a finite element analysis. International Journal of Mechanical Sciences, 1997, vol. 39, no. 5, pp. 597-613 DOI: 10.1016/S0020-7403(96)00061-6
Еще
Статья научная