Experimental evaluation of the impact strength of laminated composites with a thermoplastic matrix

Бесплатный доступ

Tensile tests were performed to obtain the quasi-static mechanical properties of the aramid fabrics (Twaron®, RUSLAN®-SVM). The elastic modulus of filaments, pulled out from the fabrics was measured with compact testing machine INSTRON 5942. Filaments pull-out tests were carried out to compare the frictional forces in different aramid fabrics. Eight various types of ballistic panels with the thermoplastic matrix based on polyethylene were fabricated and two types ballistic panels based on UHMPE (Dyneema®). Extensive ballistic tests have been carried out on various ballistic panels using 6.35 mm steel ball. Special powder gun stand for acceleration of projectiles with terminal velocity up to 900 m/s was developed The ballistic performance was assessed in terms V50 threshold as well as post V50 limit. After the test, the comparison was produced of effectiveness between all of materials used in this work. Laminates based on UHMPE fibers are much better than others in respect to the values of on indicators of V50 (about 10 %) and of the absorbed energy (about 25 %) under high-velocity impact conditions. But their energy absorption capability can sharply drop down when projectile's velocity exceeds the ballistic limit. When selecting reinforcing aramid fabric for ballistic application, it is important to consider not only the mechanical properties of the fibers and the type of fabric construction, but also the material should have good results on all parameters of ballistic efficiency such as filaments width, etc. Best aramid fabric composite was SVM S125 with twill construction and LDPE films.

Еще

High-velocity impact, fragment protective structure, uhmpe, aramid fabric, thermoplastic matrix

Короткий адрес: https://sciup.org/147151714

IDR: 147151714   |   DOI: 10.14529/engin160106

Список литературы Experimental evaluation of the impact strength of laminated composites with a thermoplastic matrix

  • Wagner L. Introduction. In: Bhatnagar A, editor. Lightweight ballistic Composites Military and Law-Enforcement Applications. Abington Hall, Abington, Cambridge CB1 6AH, England, Woodhead Publishing Limited, 2006. p. 1-28.
  • Leszek A. Utracki. Rigid Ballistic Composites (Review of Literature). Available at: http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=16885314&lang=en(accessed 13.08.14).
  • Hexcel, Technical Fabrics Handbook. Available at: http://www.hexcel.com/Resources/DataSheets/Brochure-DataSheets/HexForce_Technical_Fabrics_Handbook.pdf (accessed 15.08.14).
  • JSC “Kamenskvolokno”. Available at: http://www.aramid.ru (accessed 15.09.14).
  • David N.V., Gao X-L., Zheng J.Q. Ballistic Resistant Body Armor: Contemporary and Prospective Materials and Related Protection Mechanisms. Appl. Mech. Rev., 2009, vol. 62, no. 5, pp. 1-20. DOI: DOI: 10.1115/1.3124644
  • Kulkarni S.G., Gao X-L., Horner S.E., Zheng J.Q., David N.V. Ballistic Helmets -Their Design, Materials, and Performance Against Traumatic Brain Injury. Compos. Struct., 2013, vol. 101, pp. 313-331. DOI: DOI: 10.1016/j.compstruct.2013.02.014
  • Wambua P., Vangrimde B., Lomov S., Verpoest I. The Response of Natural Fiber Composites to Ballistic Impact by Fragment Simulating Projectiles. Compos. Struct., 2007, vol. 77, pp. 232-240. DOI: DOI: 10.1016/j.compstruct.2005.07.006
  • Cheeseman B.A., Bogetti T.A. Ballistic Impact into Fabric and Compliant Composite Laminates. Compos. Struct., 2003, vol. 61, pp. 161-173. DOI: DOI: 10.1016/S0263-8223(03)00029-1
  • Carrillo J.G., Gamboa R.A., Flores-Johnson E.A., Gonzalez-Chi P.I. Ballistic Performance of Thermoplastic composite Laminates Made from Aramid Woven Fabric and Polypropylene Matrix. Polymer Testing, 2012, vol. 31, pp. 512-519. DOI: DOI: 10.1016/j.polymertesting.2012.02.010
  • Iremonger M.J., Went A.C. Ballistic Impact of Fiber Composite Armors by Fragment-Simulating Projectiles. Compos. Part A, 1996, vol. 27A, pp. 575-581. DOI: DOI: 10.1016/1359-835X(96)00029-2
  • Lee B.L., Walsh T.F., Won S.T., Patts H.M., Song J.W., Mayer A.H. Penetration Failure Mechanisms of Armor-Grade Fiber Composites under Impact. J. Compos. Mater., 2001, vol. 35(18), pp. 1605-1633 DOI: 10.1106/YRBH-JGT9-U6PT-L555
  • Gopinath G., Zheng J.Q., Batra R.C. Effect of Matrix on Ballistic Performance of Soft Body Armor. Compos. Struct., 2012, vol. 94, pp. 2690-2696 DOI: 10.1016/j.compstruct.2012.03.038
  • NATO. Ballistic Test Method for Personal Armor Materials and Combat Clothing, STANAG 2920, 2st ed., July 2003.
  • Detail Specification. Projectile, Calibers.22,.30,.50, and 20 mm Fragment-Simulating, MIL-DTL-46593B (MR), July 2006.
  • Armor Clothes, Classification and General Technical Requirements, GOST R 50744-95, September 2013.
  • Iannucci L., Pope D. High Velocity Impact and Armor Design. eXPRESS. Polymer Letters, 2011, vol. 5(3), pp. 262-272 DOI: 10.3144/expresspolymlett.2011.26
  • Nguyen L.H., Ryan S., Cimpoeru S.J., Mouritz A.P., Orifici A.C. The Effect of Target Thickness on the Ballistic Performance of Ultra High Molecular Weight Polyethylene Composite. International Journal of Impact Engineering, 2015, vol. 75, pp. 174-183 DOI: 10.1016/j.ijimpeng.2014.07.008
  • Karthikeyan K., Russell B.P. Polyethylene Ballistic Laminates: Failure Mechanics and Interface Effect. Materials and Design, 2014, vol. 63, pp. 115-125 DOI: 10.1016/j.matdes.2014.05.069
  • Greenhalgh E.S., Bloodworth V.M., Iannucci L., Pope D. Fractographic Observations on Dyneema® Composites under Ballistic Impact. Compos. Part A, 2013, vol. 44, pp. 51-62 DOI: 10.1016/j.compositesa.2012.08.012
  • Grujicic M., Arakere G., He T., Bell W.C., Cheeseman B.A., Yen C.F. et al. A Ballistic Material Model for Cross-Plied Unidirectional Ultra-High Molecular-Weight Polyethylene Fiber-Reinforced Armor-Grade. Compos. Mater. Sci. J., 2008, vol. 498, pp. 231-241 DOI: 10.1016/j.msea.2008.07.056
  • Utomo B.D. High-Speed Impact Modeling and Testing of Dyneema Composite. PhD thesis. Delft, 2011.
  • Soykasap O., Colakoglu M. Ballistic Performance of a Kevlar-29 Woven Fiber Composite under Varied Temperatures. Mechanics of Composite Materials, 2010, vol. 46 (1), pp. 35-42 DOI: 10.1007/s11029-010-9124-3
  • Park R., Jang J. Effect of Laminate Thickness on Impact Behavior of Aramid Fiber/Vinylester Composites. Polymer Testing, 2003, vol. 22, pp. 939-946 DOI: 10.1016/S0142-9418(03)00044-8
  • Сапожников, С.Б. Компактный разгонный стенд для баллистических испытаний/С.Б. Сапожников, О.А. Кудрявцев//Вестник ЮУрГУ. Серия: Машиностроение. -2012. -№ 33 (292). -Вып. 20. -С. 139-143.
  • Lambert J.P., Jonas G.H. Towards Standardization in Terminal Ballistics Testing: Velocity Representation, BRL Report No. 1852, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, MD. (1976).
Еще
Статья научная