Dependence of the two-span truss bridge vibration frequency on the number of panels

Автор: Kirsanov Mikhail Nikolaevich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (97), 2021 года.

Бесплатный доступ

The object of the research is a planar, externally statically indeterminate truss with a cross-shaped lattice. The truss has supports at the ends and in the middle. The dependence of the lowest frequency of vibrations of the truss is found under the assumption that the mass of the structure is concentrated in its nodes. Both horizontal and vertical displacements of nodes are taken into account. Method. The reactions of the supports and the forces in the rods are found in an analytical form by the method of cutting nodes in the Maple computer mathematics system. The stiffness matrix is calculated using the Maxwell-Mohr formula. The results of calculating the first natural frequency by the Dunkerley method of a series of solutions for trusses with a different number of panels are generalized by induction to an arbitrary number of panels. Results. A comparison of the analytical expression for the first frequency with the lowest value of the natural oscillation spectrum obtained numerically shows the high accuracy of the derived formula. It is noted that with an increase in the number of panels, the accuracy of the approximate analytical solution increases, reaching several percent with the number of panels in each span of more than twenty.


Two-span truss bridge, truss, natural vibrations, lower frequency estimate, Dunkerley's method, maple, induction

Короткий адрес:

IDR: 143173817   |   DOI: 10.4123/CUBS.97.3

Список литературы Dependence of the two-span truss bridge vibration frequency on the number of panels

  • Kumar, R., Sahoo, D.R. Seismic fragility of steel special truss moment frames with multiple ductile vierendeel panels. Soil Dynamics and Earthquake Engineering. 2021. 143. Pp. 106603. DOI:10.1016/j.soildyn.2021.106603.
  • Martins, A.M.B., Simões, L.M.C., Negrão, J.H.J.O. Optimization of extradosed concrete bridges subjected to seismic action. Computers and Structures. 2021. 245. DOI:10.1016/j.compstruc.2020.106460.
  • Pekcan, G., Itani, A.M., Linke, C. Enhancing seismic resilience using truss girder frame systems with supplemental devices. Journal of Constructional Steel Research. 2014. 94. Pp. 23–32. DOI:10.1016/j.jcsr.2013.10.016. URL:
  • Vatin, N., Ivanov, Ay., Rutman, Y., Chernogorskiy, S., Shvetsov, K. Earthquake engineering optimization of structures by economic criterion. Magazine of Civil Engineering. 2017. 8(76). Pp. 67–83. DOI:10.18720/MCE.76.7.
  • Lardeur, P., Arnoult, É., Martini, L., Knopf-Lenoir, C. The Certain Generalized Stresses Method for the static finite element analysis of bar and beam trusses with variability. Finite Elements in Analysis and Design. 2012. 50. Pp. 231–242. DOI:10.1016/j.finel.2011.09.013.
  • Wang, Y.Z., Ma, L. Sound insulation performance of membrane-type metamaterials combined with pyramidal truss core sandwich structure. Composite Structures. 2021. 260. Pp. 113257. DOI:10.1016/j.compstruct.2020.113257.
  • Sangeetha, P., Sundareswaran, R., Shanmugapriya, M., Srinidhi, S., Sowmya, K. Influential nodes in planar trusses and meshes using centrality measures. Materials Today: Proceedings. 2020. 42. Pp. 932–939. DOI:10.1016/j.matpr.2020.11.848.
  • Li, J., Zhang, R., Liu, J., Cao, L., Chen, Y.F. Determination of the natural frequencies of a prestressed cable RC truss floor system. Measurement: Journal of the International Measurement Confederation. 2018. 122. Pp. 582–590. DOI:10.1016/j.measurement.2017.08.048.
  • Kamiński, M., Solecka, M. Optimization of the truss-type structures using the generalized perturbation-based Stochastic Finite Element Method. Finite Elements in Analysis and Design. 2013. 63. Pp. 69–79. DOI:10.1016/j.finel.2012.08.002.
  • Siriguleng, B., Zhang, W., Liu, T., Liu, Y.Z. Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure. Engineering Structures. 2020. 207. Pp. 109932. DOI:10.1016/j.engstruct.2019.109932.
  • Ovsyannikova, V.M. Dependence of deformations of a trapezous truss beam on the number of panels. Structural Mechanics and Structures. 2020. 26(3). Pp. 13–20. URL: (date of application: 11.03.2021).
  • Belyankin, N.A.; Boyko, A.Y. Formula for deflection of a girder with an arbitrary number of panels under the uniform load. Structural Mechanics and Structures. 2019. 1(20). Pp. 21–29. URL:
  • Ilyushin, A. The formula for calculating the deflection of a compound externally statically indeterminate frame. Structural mechanics and structures. 2019. 3(22). Pp. 29–38. URL:
  • Kirsanov, M., Serdjuks, D., Buka-Vaivade, K. Analytical Expression of the Dependence of the Multi-lattice Truss Deflection on the Number of Panels. Construction of Unique Buildings and Structures. 2020. 90. Pp. 9003. DOI:10.18720/CUBS.90.3.
  • Kirsanov, M.N. Deflection analysis of rectangular spatial coverage truss. Magazine of Civil Engineering. 2015. 53(1). Pp. 32–38. DOI:10.5862/mce.53.4.
  • Zotos, K. Performance comparison of Maple and Mathematica. Applied Mathematics and Computation. 2007. 188(2). Pp. 1426–1429. DOI:10.1016/j.amc.2006.11.008.
  • Rapp, B.E. Introduction to Maple. Microfluidics: Modelling, Mechanics and Mathematics. Elsevier, 2017. Pp. 9–20.
  • Petrichenko, E.A. Lower bound of the natural oscillation frequency of the Fink truss. Structural Mechanics and Structures. 2020. 26(3). Pp. 21–29. URL: (date of application: 11.03.2021).
  • Petrichenko, E.A. The lower limit of the frequency of natural vibrations of the Fink truss. Structural mechanics and structures. 2020. 26(3). Pp. 21–29. URL:
  • Vorobev, O.V. On methods of obtaining an analytical solution for the problem of natural frequencies of hinged structures. Structural mechanics and structures. 2020. 24(1). Pp. 25–38. URL:
  • Hutchinson, R.G., Fleck, N.A. Microarchitectured cellular solids - The hunt for statically determinate periodic trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. 85(9). Pp. 607–617. DOI:10.1002/zamm.200410208.
  • Hutchinson, R.G., Fleck, N.A. The structural performance of the periodic truss. Journal of the Mechanics and Physics of Solids. 2006. 54(4). Pp. 756–782. DOI:10.1016/j.jmps.2005.10.008.
  • Zok, F.W., Latture, R.M., Begley, M.R. Periodic truss structures. Journal of the Mechanics and Physics of Solids. 2016. 96. Pp. 184–203. DOI:10.1016/j.jmps.2016.07.007.
  • Ignatiev, V.A. Calculation of regular rod systems. Saratov Higher Military Chemical Military School. Saratov, 1973.
  • Kirsanov, M.N., Vorobev, O.V. Calculating of a spatial cantilever truss natural vibration frequency with an arbitrary number of panels: analytical solution. Construction of Unique Buildings and Structures. 2021. 94(1). Pp. 9402–9402. DOI:10.4123/CUBS.94.2. URL: (date of application: 9.06.2021).
  • Cao, S., Huo, M., Qi, N., Zhao, C., Zhu, D., Sun, L. Extended continuum model for dynamic analysis of beam-like truss structures with geometrical nonlinearity. Aerospace Science and Technology. 2020. 103. Pp. 105927. DOI:10.1016/j.ast.2020.105927.
  • Ufimtsev, E., Voronina, M. Research of Total Mechanical Energy of Steel Roof Truss during Structurally Nonlinear Oscillations. Procedia Engineering. 2016. 150. Pp. 1891–1897. DOI:10.1016/j.proeng.2016.07.188. URL:
  • Santana, M.V.B., Gonçalves, P.B., Silveira, R.A.M. Closed-form solutions for the symmetric nonlinear free oscillations of pyramidal trusses. Physica D: Nonlinear Phenomena. 2021. 417. Pp. 132814. DOI:10.1016/j.physd.2020.132814.
  • Liu, M., Cao, D., Zhang, X., Wei, J., Zhu, D. Nonlinear dynamic responses of beamlike truss based on the equivalent nonlinear beam model. International Journal of Mechanical Sciences. 2021. 194. Pp. 106197. DOI:10.1016/j.ijmecsci.2020.106197.
  • Rybakov, L.S. Linear elastic analysis of a spatial orthogonal lattice. Mechanics of composite materials and structures. 2016. 22(4). Pp. 567–584. URL: (date of application: 4.07.2021).
  • Obraztsov, I. F., Rybakov, L. S., Mishustin, I. V. On methods for analyzing deformation of rod elastic systems of a regular structure. Mechanics of composite materials and structures. 1996. 2(2). Pp. 3–14. URL: (date of application: 5.07.2021).
  • Rybakov, L. S., Mishustin, I. V. Small elastic vibrations of planar trusses of orthogonal structure. Mechanics of composite materials and structures. 2003. 9(1). Pp. 42–58. URL: (date of application: 5.07.2021).
  • Buka-Vaivade, K., Kirsanov, M.N., Serdjuks, D.O. Calculation of deformations of a cantilever-frame planar truss model with an arbitrary number of panels. Vestnik MGSU. 2020. (4). Pp. 510–517. DOI:10.22227/1997-0935.2020.4.510-517.
  • Trainor, P.G.S., Shah, A.H., Popplewell, N. Estimating the fundamental natural frequency of towers by Dunkerley’s method. Journal of Sound and Vibration. 1986. 109(2). Pp. 285–292. DOI:10.1016/S0022-460X(86)80009-8.
  • Serpik, I.N., Alekseytsev, A. V. Optimization of flat steel frame and foundation posts system. Magazine of Civil Engineering. 2016. 61(1). Pp. 14–24. DOI:10.5862/MCE.61.2.
  • Ho-Huu, V., Vo-Duy, T., Luu-Van, T., Le-Anh, L., Nguyen-Thoi, T. Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme. Autom. Construct. 2016. 68. Pp. 81–94.
  • Tyukalov, Y. Optimal Shape of Arch Concrete Block Bridge. Construction of Unique Buildings and Structures. 2020. 93(8). Pp. 9307. DOI:10.18720/CUBS.93.7.
Статья научная