COVID-19 pneumonia: the point of view of vascular specialist

Автор: Costanzo Luca, Grasso Simona Antonina, Palumbo Francesco Paolo, Ardita Giorgio, Di Pino Luigi, Antignani Pier Luigi, Aluigi Leonardo, Arosio Enrico, Failla Giacomo

Журнал: Ульяновский медико-биологический журнал @medbio-ulsu

Рубрика: Клиническая медицина

Статья в выпуске: 3, 2020 года.

Бесплатный доступ

The development of coagulopathy is emerging as one of the most significant poor prognostic features in COVID-19 pneumopathy. Thromboembolic manifestations such as pulmonary embolism and disseminated intravascular coagulation (DIC) have been reported and resulted in poor prognosis for the patient. Starting from the evidence in the literature, the purpose of this paper is to analyze potential mechanism involved in coagulation impairment following COVID-19 infection and identify possible vascular therapeutic strategies. D-dimer, a protein product of fibrin degradation, has been found elevated in the most severe cases and correlated to mortality. Potentially involved factors in the impairment of coagulation caused by viral infection include the dysregulated inflammatory response, platelet and endothelial dysfunction with impaired fibrinolysis. Heparin is an anticoagulant molecule that also showed anti-inflammatory properties and a potential antiviral effect. A favorable outcome was highlighted with the use of LMWH in severe patients with COVID-19 who meet the SIC criteria (sepsis-induced coagulopathy) or with markedly high D-dimer. The use of low molecular weight heparin could prevent thromboembolic complications in COVID-19 pneumopathy. However, the correct timing of prophylaxis according to the stage of COVID-19 disease and the appropriate therapeutic dosage to use in severe cases need further researches.

Еще

Covid-19, pneumonia, thrombosis, coagulopathy, d-dimer, low molecular weight heparin, d-димер

Короткий адрес: https://sciup.org/14117581

IDR: 14117581   |   DOI: 10.34014/2227-1848-2020-3-21-27

Список литературы COVID-19 pneumonia: the point of view of vascular specialist

  • Chen, Jianpu and Wang, Xiang and Zhang, Shutong and Liu, Bin and Wu, Xiaoqing and Wang, Yanfang and Wang, Xiaoqi and Yang, Ming and Sun, Jianqing and Xie, Yuanliang. Findings of Acute Pulmonary Embolism in COVID-19 Patients (3/1/2020). Available at SSRN: https://ssrn.com/abstract=3548771 or DOI: 10.2139/ssrn.3548771
  • Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18: 844-847.
  • Goeijenbier M., van Wissen M., van de Weg C., Jong E., Gerdes V.E., Meijers J.C., Brandjes D.P., van Gorp E.C. Review: Viral infections and mechanisms of thrombosis and bleeding. J. Med. Virol. 2012; 84: 1680-1696.
  • Branchford B.R., Carpenter S.L. The Role of Inflammation in Venous Thromboembolism. Front. Pediatr. 2018; 6: 142.
  • Xu J., Lupu F., Esmon C.T. Inflammation, innate immunity and blood coagulation. Hamostaseologie. 2010; 30: 5-9.
  • Esmon C.T., Xu J., Lupu F. Innate immunity and coagulation. J. Thromb. Haemost. 2011; 9: 182-188.
  • Fuchs T.A., Brill A., Wagner D.D. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler. Thromb. Vasc. Biol. 2012; 32: 1777-1783.
  • Li J., Hara H., Wang Y., Esmon C., Cooper D.K.C., Iwase H. Evidence for the important role of inflammation in xenotransplantation. J. Inflamm. (Lond.). 2019; 16: 10.
  • Shorr A.F., Thomas S.J., Alkins S.A. D-dimer correlates with proinflammatory cytokine levels and outcomes in critically ill patients. Chest. 2002; 121: 1262-1268.
  • Wu Y.P., Wei R., Liu Z.H., Chen B., Lisman T., Ren D.L., Han J.J., Xia Z.L., Zhang F.S., Xu W.B., Preissner K.T., de Groot P.G. Analysis of thrombotic factors in severe acute respiratory syndrome (SARS) patients. Thromb. Haemost. 2006; 96: 100-101.
  • Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 2005; 18: 1-10.
  • Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. J. Pathol. 2015; 235: 185-195.
  • Levi M. Disseminated intravascular coagulation. Crit. Care Med. 2007; 35: 2191-2195.
  • Wiwanitkit V. Hemostatic disorders in bird flu infection. Blood Coagul. Fibrinolysis. 2008; 19: 5-6.
  • Alquwaizani M., Buckley L., Adams C., Fanikos J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013; 1, 83-97.
  • Brinkhous K., Smith H., Warner E., Seegers W. The Inhibition of Blood Clotting: An Unidentified Substance Which Acts in Conjunction with Heparin to Prevent the Conversion of Prothrombin into Thrombin. Am. J. Physiol. 1939; 125: 683-687.
  • Lindahl U., Bäckström G., Höök M., Thunberg L., Fransson L.A., Linker A. Structure of the Antithrombin-Binding Site in Heparin. Proc. Natl. Acad. Sci. USA. 1979; 76: 3198-3202.
  • Hirsh J., Warkentin T.E., Shaughnessy S.G., Anand S.S., Halperin J.L., Raschke R., Granger C., Ohman E.M., Dalen J.E. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001; 119: 64S-94S.
  • Zhang Y., Zhang M., Tan L., Pan N., Zhang L. The clinical use of Fondaparinux: A synthetic heparin pentasaccharide. Prog. Mol. Biol. Transl. Sci. 2019; 163: 41-53.
  • Johnston A., Hsieh S.C., Carrier M., Kelly S.E., Bai Z., Skidmore B. A systematic review of clinical practice guidelines on the use of low molecular weight heparin and fondaparinux for the treatment and prevention of venous thromboembolism: implications for research and policy decision-making. PLoS One. 2018; 13: e0207410.
  • Mousavi S., Moradi M., Khorshidahmad T., Motamedi M. Anti-Inflammatory Effects of Heparin and Its Derivatives: A Systematic Review. Adv. Pharmacol. Sci. 2015; 2015: 507151.
  • Oduah E.I., Linhardt R.J., Sharfstein S.T. Heparin: Past, Present, and Future. Pharmaceuticals. 2016; 9.
  • Thachil J. The versatile heparin in COVID-19. J. Thromb. Haemost. 2020 [Epub ahead of print].
  • Iba T., Hashiguchi N., Nagaoka I., Tabe Y., Kadota K., Sato K. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med. Exp. 2015; 3: 36.
  • Zhu C., Liang Y., Li X., Chen N., Ma X. Unfractionated heparin attenuates histone-mediated cytotoxicity in vitro and prevents intestinal microcirculatory dysfunction in histone-infused rats. J. Trauma Acute Care Surg. 2019; 87: 614-622.
  • Ma J., Bai J. Protective effects of heparin on endothelial cells in sepsis. Int. J. Clin. Exp. Med. 2015; 8: 5547-5552.
  • Shukla D., Spear P.G. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 2001; 108: 503-510.
  • Ghezzi S., Cooper L., Rubio A., Pagani I., Capobianchi M.R., Ippolito G. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antiviral Res. 2017; 140: 13-17.
  • Vicenzi E., Canducci F., Pinna D., Mancini N., Carletti S., Lazzarin A. Coronaviridae and SARS-associ-ated coronavirus strain HSR1. Emerg. Infect. Dis. 2004; 10: 413-418.
  • Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur. Heart J. 2020; Mar 30 [Epub ahead of print].
  • Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020 [Epub ahead of print].
  • Xie Y., Wang X., Yang P., Zhang S. COVID-19 Complicated by Acute Pulmonary Embolism. Radiology: Cardiothoracic Imaging. 2020; 2.
Еще
Статья научная