Comparative performance evaluation of entropic thresholding algorithms based on Shannon, Renyi and Tsallis entropy definitions for electrical capacitance tomography measurement systems

Автор: Alfred J. Mwambela

Журнал: International Journal of Intelligent Systems and Applications @ijisa

Статья в выпуске: 4 vol.10, 2018 года.

Бесплатный доступ

The concept of entropy as a measure of information has been extensively applied in information theory and related fields. The complex nature of information has resulted in some proposed entropy definitions. In image processing, the entropy concept has been used in developing thresholding techniques based on maximum entropy principles for image segmentation, enhancement and object detection purposes. In this article, entropy definitions are analysed to establish their relationship and after that evaluate their performance in image thresholding. Static simulated data from Electrical Capacitance Tomography measurement system for annular and stratified flows in multiphase hydrocarbons production has been used. Performance evaluation results of thresholding algorithms using Renyi entropy has shown to improve the measurements, particularly for stratified flow regimes. The improvement is solely based on the entropy definition, and it has been observed the introduced controlling parameters do not affect its performance. Renyi entropic thresholding algorithm is relatively robust as it is independent of the controlling parameter q and the grey level resolution. Therefore, there is the potential possibility of using Renyi entropic thresholding to improve measurements in hydrocarbons flow measurement using Electrical Capacitance Tomography measurement system.


Image segmentation, Thresholding, Entropy, Electric capacitance tomography, multiphase flows

Короткий адрес:

IDR: 15016479   |   DOI: 10.5815/ijisa.2018.04.05

Список литературы Comparative performance evaluation of entropic thresholding algorithms based on Shannon, Renyi and Tsallis entropy definitions for electrical capacitance tomography measurement systems

  • Alme K. J, Mylvaganam S. "Electrical capacitance tomography; sensor models, design, simulations, and experimental verification. IEEE Sens J 2006, vol.6, pp. 1256–66. doi:10.1109/JSEN.2006.881409.
  • Marashdeh Q, Warsito W, Fan L. S, Teixeira F. L. "A multimodal tomography system based on ECT sensors". IEEE Sens J 2007, vol. 7, pp. 426–33. doi:10.1109/JSEN.2006.890149.
  • Marashdeh Q, Fan L. S. "Electrical capacitance tomography - a perspective". Ind Eng Chem Res 2008. vol. 47, pp. 3708–19.
  • Yang W. "Design of electrical capacitance tomography sensors". Meas Sci Technol 2010, vol. 21, 042001 (13pp). doi:10.1088/0957-0233/21/4/042001.
  • Peng L, Ye J, Lu G, Yang W. "Evaluation of the effect of some electrodes in ECT sensors on image quality". IEEE Sens J 2011, vol. 12 pp. 1554–65. doi:10.1109/JSEN.2011.2174438.
  • Seong C. K, Pusppanathan J, Abdul Rahim R, Loon G. C, Susiapan Y.S.L, Phang F.A, et al. "Hardware development of electrical capacitance tomography (ECT) system with capacitance sensor for liquid measurements". J Teknol, 2015, vol. 73, pp 13–22. doi:
  • Liu S, Chen Q, Wang H. G, Jiang F, Ismail I, Yang W. Q. "Electrical capacitance tomography for gas-solids flow measurement for circulating fluidised beds". Flow Meas Instrum, 2005, vol. 16, pp. 135–44. doi:10.1016/j.flowmeasinst.2005.02.013.
  • Ismail I, Gamio J. C. C, Bukhari S. F. A, Yang W.Q. "Tomography for multiphase flow measurement in the oil industry". Flow Meas Instrum, 2005, vol. 16, pp. 145–55. doi:10.1016/j.flowmeasinst.2005.02.017.
  • Li Y, Yang W, Xie C, Huang S, Wu Z, Tsamakis D, et al. "Gas/oil/water flow measurement by electrical capacitance tomography". Meas Sci Technol, 2013, vol. 24, 074001 (12pp). doi:10.1088/0957-0233/24/7/074001.
  • Rodriguez Frias M. A, Yang W. "Model-based image reconstruction for electrical capacitance tomography with a prior calculated database". 2016 IEEE Int. Conf. Imaging Syst. Tech., 2016, pp. 350 – 5. doi:10.1109/IST.2016.7738250.
  • Nombo J, Mwambela A, Kisangiri M. Performance Analysis of Grey Level Fitting Mechanism based Gompertz Function for Image Reconstruction Algorithms in Electrical Capacitance Tomography Measurement System. Int J Comput Appl 2015;109:8887. doi:dio.10.5120/19263 - 0960.
  • Sun J, Yang W. A dual-modality electrical tomography sensor for measurement of gas-oil-water stratified flows. Meas J Int Meas Confed 2015;66:150–60. doi:10.1016/j.measurement.2015.01.032.
  • Ismail A. S. I, Ismail I, Zoveidavianpoor M, Mohsin R, Piroozian A, Misnan M. S, et al. Review of oil-water through pipes. Flow Meas Instrum 2015;45:357–74. doi:10.1016/j.flowmeasinst.2015.07.015.
  • Rahman N. A. A, Rahim R. A, Nawi A. M, Ling L.P, Pusppanathan J, Mohamad E. J, et al. A Review of Electrical capacitance Tomography Sensor Development. J Teknol (Sciences Eng) 2015;73:35–41.
  • Zhou Y. G, Yan H, Fang Z. The design of an Electrical Capacitance Tomography System based on LabVIEW. Int J Signal Process Image Process Pattern Recognit 2015;8:165–78. doi:10.14257/ijsip.2015.8.11.16.
  • Yang W, Peng L. Image reconstruction algorithms for electrical capacitance tomography. Meas Sci Technol 2003;14.
  • Lei J, Liu S, Li Z. H, Sun M. Image reconstruction algorithm based on the extended regularised total least squares method for electrical capacitance tomography. IET Sci Meas Technol 2008;2:326–36. doi:10.1049/iet-smt:20080029.
  • Wu X, Huang G, Wang J, Xu C. "Image reconstruction method for electrical capacitance tomography based on compressed sensing principle". Meas Sci Technol, 2013, vol. 24, 075401 (7 pp). doi:10.1088/0957-0233/24/7/075401.
  • Cao Z, Xu L. "Direct methods for image reconstruction in electrical capacitance tomography" Ind. Tomogr., 2015, doi:10.1016/B978-1-78242-118-4.00014-9.
  • Ye J, Wang H, Yang W. "Image reconstruction for electrical capacitance tomography based on sparse representation". IEEE Trans Instrum Meas 2015, vol. 64, pp. 89–102. doi:10.1109/TIM.2014.2329738.
  • Cui Z, Wang Q, Xue Q, Fan W, Zhang L, Cao Z, et al. "A review of image reconstruction algorithms for electrical capacitance/resistance tomography". Sens Rev, 2016, 36. doi:
  • Nombo J, Mwambela A, Kisangiri M. "A review of image reconstruction methods in electrical capacitance tomography". J Math Comput Sci, 2016, vol. 6, pp. 39–57.
  • Yang Y, Peng L, Jia J. "A novel multi-electrode sensing strategy for electrical capacitance tomography with ultra-low dynamic range". Flow Meas Instrum, 2017, vol. 53, pp. 67–79. doi:10.1016/j.flowmeasinst.2016.05.005.
  • Rodriguez Frias MA, Yang W. "Real-time model-based image reconstruction with a prior calculated database for electrical capacitance tomography". Meas Sci Technol, 2017, vol. 28, 4006. doi:10.1088/1361-6501/aa6221.
  • Xie CG, Huang SM, Beck MS, Hoyle BS, Thorn R, Lenn C, et al. "Electrical capacitance tomography for flow imaging: system model for the development of image reconstruction algorithms and design of primary sensors". IEE Proc G (Circuits, Devices Syst), 1992, vol. 139, pp. 89–98.
  • Mwambela AJ, Johansen G. "Multiphase flow component volume fraction measurement: Experimental evaluation of entropic thresholding methods using an electrical capacitance tomography system". Meas Sci Technol, 2001, vol. 12, 1092–101. doi:10.1088/0957-0233/12/8/315.
  • Nombo J, Mwambela A, Kisangiri M. "A Grey Level Fitting Mechanism based on Gompertz Function for Two Phase Flow Imaging using Electrical Capacitance Tomography Measurement". Int J Comput Appl, 2014, vol. 101, pp. 7–12. doi:dio.10.5120/17705 - 8704.
  • Bhatia P., Singh S, Kumar V. "On Applications of a Generalized Hyperbolic Measure of Entropy". Int J Intell Syst Appl, 2015, vol. 7, pp. 36–43. doi:10.5815/ijisa.2015.07.05.
  • Ye Z. W, Wang M. W, Liu W, Chen S Bin. "Fuzzy entropy based optimal thresholding using bat algorithm". Appl Soft Comput J 2015, vol. 31, pp. 381–95. doi:10.1016/j.asoc.2015.02.012.
  • Ye Z, Wang M, Jin H, Liu W, Lai X. "An Image Thresholding Approach Based on Ant Colony Optimization Algorithm Combined with Genetic Algorithm". Int J Intell Syst Appl, 2015, vol. 7, pp. 8–15. doi:10.5815/ijisa.2015.05.02.
  • Sadek S. Entropic Image Segmentation : A Fuzzy Approach Based on Tsallis Entropy. Int J Comput Vis Signal Process, 2015, vol. 5, pp. 1–7.
  • Mwambela A, Isaksen Ø, Johansen G. "The use of entropic thresholding methods in the reconstruction of capacitance tomography data". Chem Eng Sci, 1997, vol. 5, pp. 2149–59. doi:
  • Shannon C. E. "A mathematical theory of communication". Bell Sys Tech Jr, 1948, 27:379-423-659.
  • Pal NR, Pal SK. "Entropic thresholding". Signal Processing 1989, vol. 16, pp. 97–108.
  • Maszczyk T, Duch W. "Comparison of Shannon, Renyi and Tsallis entropy used in decision trees". Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2008, 5097 LNAI, pp. 643–51. doi:10.1007/978-3-540-69731-2_62.
  • Rényi A. "On measures of entropy and information". Entropy 1961, vol.47, pp. 547–561. doi:10.1021/jp106846b.
  • Kapur J. N. "Generalized entropy of order α and type β". Maths Semi 1967, vol. 4, pp. 79–84.
  • Tsallis C. "Possible generalisation of Boltzmann–Gibbs statistics". J Stat Phys 1988, vol. 52, pp. 480–7.
  • Sahoo P. K, Arora G. "Image thresholding using two-dimensional Tsallis–Havrda–Charvát entropy". Pattern Recognit Lett, 2006, vol. 27, pp. 520–8. doi:
  • Havrda J, Charvát F. "Quantification method of classification processes: Concept of structural a-entropy". Kybernetika 1967, vol. 3, pp. 30–5.
  • Wang F, Marashdeh Q, Fan LS, Warsito W. "Electrical capacitance volume tomography: Design nd applications." Sensors 2010, vol. 10, pp. 1890–917. doi:10.3390/s100301890.
  • Marashdeh Q, Fan L. S, Du B, Warsito W. "Electrical Capacitance Tomography − A Perspective". Ind Eng Chem Res 2008, vol. 47, pp 3708–19. doi:10.1021/ie0713590.
  • Shannon, C. E. "A Mathematical Theory of Communication". Bell System Tech J 1948, vol. 27, pp. 379–423.
  • Pun T. "Entropic thresholding, a new approach". Comput Graph Image Process 1981, vol. 16, pp. 210–39.
  • Kapur J. N, Sahoo P. K, Wong A. K. "A new method for gray-level picture thresholding using the entropy of the histogram". Comput Vision, Graph Image Process 1985, vol. 29, pp. 273–85. doi:10.1016/0734-189X(85)90125-2.
  • Yin P. Y. "Multilevel minimum cross-entropy threshold selection based on particle swarm optimisation". Appl Math Comput 2007, vol. 184, pp. 503–13.
  • Sahoo P., Soltani S, Wong A. K. "A survey of thresholding techniques". Comput Vision, Graph Image Process 1988, 41, vol. 23, pp. 3–60. doi:10.1016/0734-189X(88)90022-9.
  • Sezgin M. "Survey over image thresholding techniques and quantitative performance evaluation". J Electron Imaging, 2004, vol. 13(1), pp. 146-165.
  • Chang C. I, Du Y, Wang J, Guo S. M, Thouin P. D. "Survey and comparative analysis of entropy and relative entropy thresholding techniques". IEE Proc Vis, Image Signal Process 2006, vol. 153, pp. 837–50. doi:10.1049/ip-vis.
  • Sahoo P, Wilkins C, Yeager J. "Threshold selection using Renyi’s entropy". Pattern Recognit 1997, vol. 30, pp. 71–84. doi:10.1016/S0031-3203(96)00065-9.
  • Yen J. C, Chang F. J, Chang S. "A new criterion for automatic multilevel thresholding". Image Process IEEE Trans 1995, vol. 4, pp. 370–8.
  • Portes de Albuquerque M, Esquef I. A, Gesualdi Mello A. R, "Image thresholding using Tsallis entropy". Pattern Recognit Lett, 2004, vol. 25, pp. 1059–65. doi:10.1016/j.patrec.2004.03.003.
  • Johal R. S, Tirnakli U. "Tsallis versus Renyi entropic form for systems with q-exponential behaviour: the case of dissipative maps". Phys A Stat Mech Its Appl 2004, vol. 331, pp. 487–96. doi:10.1016/j.physa.2003.09.064.
  • Isaksen Ø. "A novel approach to reconstruction of process tomography data". PhD. Thesis, University of Bergen, 1994.
  • Hjertaker B.T. "Static characterization of a dual sensor flow imaging system". Flow Meas Instrum 1998, vol. 9, pp. 183–91. doi:10.1016/S0955-5986(98)00018-1.
Статья научная