Безобжиговый зольный гравий как крупный заполнитель бетонов

Автор: Усанова Ксения Юрьевна, Барабанщиков Юрий Германович, Костыря Сергей Александрович, Федоренко Юлия Петровна

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 9 (72), 2018 года.

Бесплатный доступ

Приведен краткий обзор исследования бетонов с крупным заполнителем из зольного гравия, получаемого из золы уноса угольных ТЭС и ТЭЦ. Выполненные авторами экспериментальные исследования безобжигового зольного гравия Березовской ГРЭС (Красноярский край, Россия). Исследованы насыпная плотность, водопоглощение, прочность на сжатие в цилиндре и морозостойкость безобжигового зольного гравия. Установлено, что водопоглощение крупного заполнителя составляет 6,1 %, а прочность заполнителя при сдавливании в цилиндре - 6,2 МПа. Полученные характеристики заполнителей показывают их возможность использования в конструкционных бетонах с легкими заполнителями.

Еще

Зольный гравий, безобжиговый зольный гравий, обжиговый зольный гравий, гранулированная зола уноса, бетон, цемент

Короткий адрес: https://sciup.org/143170686

IDR: 143170686   |   DOI: 10.18720/CUBS.72.2

Список литературы Безобжиговый зольный гравий как крупный заполнитель бетонов

  • Kumar, P.P., Rama Mohan Rao, P. Packing density of self compacting concrete using normal and lightweight aggregates. 2017. International Journal of Civil Engineering and Technology. 8 (4), pp. 1156-1166.
  • Kockal, N.U., Ozturan, T. Durability of lightweight concretes with lightweight fly ash aggregates. 2011. Construction and Building Materials. 25 (3), pp. 1430-1438. DOI: 10.1016/j.conbuildmat.2010.09.022
  • Gomathi, P., Sivakumar, A. Accelerated curing effects on the mechanical performance of cold bonded and sintered fly ash aggregate concrete. 2015. Construction and Building Materials. 77 pp. 276-287. DOI: 10.1016/j.conbuildmat.2014.12.108
  • Güneyisi, E., Gesoǧlu, M., Pürsünlü, Ö., Mermerdaş, K. Durability aspect of concretes composed of cold bonded and sintered fly ash lightweight aggregates. 2013. Composites Part B: Engineering. 53 pp. 258-266. DOI: 10.1016/j.compositesb.2013.04.070
  • Kirubakaran, D., Joseravindraraj, B. Utilization of pelletized fly ash aggregate to replace the natural aggregate: A review. 2018. International Journal of Civil Engineering and Technology. 9 (8), pp. 147-154.
  • Gesoǧlu, M., Güneyisi, E., Ali, B., Mermerdaş, K. Strength and transport properties of steam cured and water cured lightweight aggregate concretes. 2013. Construction and Building Materials. 49 pp. 417-424.
  • DOI: 10.1016/j.conbuildmat.2013.08.042
  • Kockal, N.U., Ozturan, T. Strength and elastic properties of structural lightweight concretes. 2011. Materials and Design. 32 (4), pp. 2396-2403.
  • DOI: 10.1016/j.matdes.2010.12.053
  • Kockal, N.U., Ozturan, T. Properties of lightweight concretes made from lightweight fly ash aggregates. 2009. Excellence in Concrete Construction through Innovation - Proceedings of the International Conference on Concrete Construction. pp. 251-261.
  • Their, J.M., Özakça, M. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. 2018. Construction and Building Materials. 180 pp. 12-22.
  • DOI: 10.1016/j.conbuildmat.2018.05.274
  • Narattha, C., Chaipanich, A. Phase characterizations, physical properties and strength of environment-friendly cold-bonded fly ash lightweight aggregates. 2018. Journal of Cleaner Production. 171 pp. 1094-1100.
  • DOI: 10.1016/j.jclepro.2017.09.259
  • Venkata Suresh, G., Pavan Kumar Reddy, P., Karthikeyan, J. Effect of GGBS and Fly ash aggregates on properties of geopolymer concrete. 2016. Journal of Structural Engineering (India). 43 (5), pp. 436-444.
  • Thomas, J., Harilal, B. Mechanical properties of cold bonded quarry dust aggregate concrete subjected to elevated temperature. 2016. Construction and Building Materials. 125 pp. 724-730.
  • DOI: 10.1016/j.conbuildmat.2016.08.093
  • Güneyisi, E., Gesoglu, M., Özturan, T., Ipek, S. Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber. 2015. Construction and Building Materials. 84 pp. 156-168.
  • DOI: 10.1016/j.conbuildmat.2015.03.054
  • Gesoglu, M., Güneyisi, E., Ozturan, T., Oz, H.O., Asaad, D.S. Shear thickening intensity of self-compacting concretes containing rounded lightweight aggregates. 2015. Construction and Building Materials. 79 pp. 40-47.
  • DOI: 10.1016/j.conbuildmat.2015.01.012
  • Gopi, R., Revathi, V., Kanagaraj, D. Light expanded clay aggregate and fly ash aggregate as self curing agents in self compacting concrete. 2015. Asian Journal of Civil Engineering. 16 (7), pp. 1025-1035.
  • Gomathi, P., Sivakumar, A. Synthesis of geopolymer based class-F fly ash aggregates and its composite properties in Concrete. 2014. Archives of Civil Engineering. 60 (1), pp. 55-75.
  • DOI: 10.2478/ace-2014-0003
  • Al Bakri, A.M.M., Kamarudin, H., Binhussain, M., Nizar, I.K., Rafiza, A.R., Zarina, Y. Comparison of geopolymer fly ash and ordinary portland cement to the strength of concrete. 2013. Advanced Science Letters. 19 (12), pp. 3592-3595.
  • DOI: 10.1166/asl.2013.5187
  • Güneyisi, E., Gesoǧlu, M., Ipek, S. Effect of steel fiber addition and aspect ratio on bond strength of cold-bonded fly ash lightweight aggregate concretes. 2013. Construction and Building Materials. 47 pp. 358-365.
  • DOI: 10.1016/j.conbuildmat.2013.05.059
  • Gesoǧlu, M., Güneyisi, E., Alzeebaree, R., Mermerdaş, K. Effect of silica fume and steel fiber on the mechanical properties of the concretes produced with cold bonded fly ash aggregates. 2013. Construction and Building Materials. 40 pp. 982-990.
  • DOI: 10.1016/j.conbuildmat.2012.11.074
  • Priyadharshini, P., Mohan Ganesh, G., Santhi, A.S. Effect of cold bonded fly ash aggregates on strength & restrained shrinkage properties of concrete. 2012. IEEE-International Conference on Advances in Engineering, Science and Management, ICAESM-2012. pp. 160-164.
  • Joseph, G., Ramamurthy, K. Workability and strength behaviour of concrete with cold-bonded fly ash aggregate. 2009. Materials and Structures/Materiaux et Constructions. 42 (2), pp. 151-160.
  • DOI: 10.1617/s11527-008-9374-x
  • Gesoğlu, M., Özturan, T., Güneyisi, E. Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes. 2006. Cement and Concrete Composites. 28 (7), pp. 598-605.
  • DOI: 10.1016/j.cemconcomp.2006.04.002
  • Gesoglu, M., Özturan, T., Güneyisi, E. Shrinkage cracking of lightweight concrete made with cold-bonded fly ash aggregates. 2004. Cement and Concrete Research. 34 (7), pp. 1121-1130.
  • DOI: 10.1016/j.cemconres.2003.11.024
  • Gesoǧlu, M., Özturan, T., Güneyisi, E. Effect of coarse aggregate properties on the ductility of lightweight concretes. 2003. Role of Cement Science in Sustainable Development - Proceedings of the International Symposium - Celebrating Concrete: People and Practice. pp. 537-546.
  • Shivaprasad, K.N., Das, B.B. Effect of Duration of Heat Curing on the Artificially Produced Fly Ash Aggregates. 2018. IOP Conference Series: Materials Science and Engineering. 431 (9),.
  • DOI: 10.1088/1757-899X/431/9/092013
  • Rajamane, N.P., Ambily, P.S. Modified Bolomey equation for strengths of lightweight concretes containing fly ash aggregates. 2012. Magazine of Concrete Research. 64 (4), pp. 285-293.
  • DOI: 10.1680/macr.11.00157
  • Dinakar, P. Properties of fly-ash lightweight aggregate concretes. 2013. Proceedings of Institution of Civil Engineers: Construction Materials. 166 (3), pp. 133-140.
  • DOI: 10.1680/coma.11.00046
  • Dash, S., Kar, B., Mukherjee, P.S. Pervious concrete using fly ash aggregate as coarse aggregate-an experimental study. 2018. AIP Conference Proceedings. 1953.
  • DOI: 10.1063/1.5032808
  • Babu, B.R., Thenmozhi, R. An investigation of the mechanical properties of Sintered Fly Ash Lightweight Aggregate Concrete (SFLWAC) with steel fibers. 2018. Archives of Civil Engineering. 64 (1), pp. 73-85.
  • DOI: 10.2478/ace-2018-0005
  • Bursa, C., Tanriverdi, M., Çiçek, T. Use of fly ash aggregates in production of light-weight concrete. 2017. IMCET 2017: New Trends in Mining - Proceedings of 25th International Mining Congress of Turkey. pp. 469-476.
  • Wasserman, R., Bentur, A. Effect of lightweight fly ash aggregate microstructure on the strength of concretes. 1997. Cement and Concrete Research. 27 (4), pp. 525-537.
  • DOI: 10.1016/S0008-8846(97)00019-7
  • Cerny, V., Kocianova, M., Drochytka, R. Possibilities of Lightweight High Strength Concrete Production from Sintered Fly Ash Aggregate. 2017. Procedia Engineering. 195 pp. 9-16.
  • DOI: 10.1016/j.proeng.2017.04.517
  • Kayali, O. Fly ash lightweight aggregates in high performance concrete. 2008. Construction and Building Materials. 22 (12), pp. 2393-2399.
  • DOI: 10.1016/j.conbuildmat.2007.09.001
  • Domagała, L. The effect of lightweight aggregate water absorption on the reduction of water-cement ratio in fresh concrete. 2015. Procedia Engineering. 108 pp. 206-213.
  • DOI: 10.1016/j.proeng.2015.06.139
  • Černý, V., Sokol, P., Drochytka, R. Production possibilities of concrete based on artificial fly ash aggregates. 2014. Advanced Materials Research. 923 pp. 130-133.
  • DOI: 10.4028/www.scientific.net/AMR.923.130
  • Domagala, L. Modification of properties of structural lightweight concrete with steel fibres. 2011. Journal of Civil Engineering and Management. 17 (1), pp. 36-44.
  • DOI: 10.3846/13923730.2011.553923
  • Harish, K.V., Dattatreya, J.K., Neelamegam, M. Properties of sintered fly ash aggregate concrete with and without fibre and latex. 2011. Indian Concrete Journal. 85 (1), pp. 35-42.
  • Kockal, N.U., Ozturan, T. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes. 2010. Journal of Hazardous Materials. 179 (1-3), pp. 954-965.
  • DOI: 10.1016/j.jhazmat.2010.03.098
  • Kayali, O., Zhu, B. Chloride induced reinforcement corrosion in lightweight aggregate high-strength fly ash concrete. 2005. Construction and Building Materials. 19 (4), pp. 327-336.
  • DOI: 10.1016/j.conbuildmat.2004.07.003
  • Kayali, O., Haque, M.N., Zhu, B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete. 2003. Cement and Concrete Composites. 25 (2), pp. 207-213.
  • DOI: 10.1016/S0958-9465(02)00016-1
  • Nair, H.K., Ramamurthy, K. Behaviour of concrete with sintered fly ash aggregate. 2010. Indian Concrete Journal. 84 (6), pp. 33-38.
  • Kikuchi, M., Mukai, T. PROPERTIES OF STRUCTURAL LIGHT-WEIGHT CONCRETE CONTAINING SINTERED FLY ASH AGGREGATE AND CLINKER ASH. 1986. Transactions of the Japan Concrete Institute. 8 pp. 45-50.
  • Satpathy, H.P., Patel, S.K., Nayak, A.N. Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. 2019. Construction and Building Materials. 202 pp. 636-655.
  • DOI: 10.1016/j.conbuildmat.2019.01.034
  • Klyuev, S.V., Klyuev, A.V., Khezhev, T.A., Pukharenko, Y. High-strength fine-grained fiber concrete with combined reinforcement by fiber (2018) Journal of Engineering and Applied Sciences, 13, pp. 6407-6412.
  • Lesovik, R.V., Klyuyev, S.V., Klyuyev, A.V., Netrebenko, A.V., Yerofeyev, V.T., Durachenko, A.V. Fine-grain concrete reinforced by polypropylene fiber (2015) Research Journal of Applied Sciences, 10 (10), pp. 624-628.
Еще
Статья обзорная