Bearing capacity of reinforced concrete T-beams with a steel profile

Автор: Korsun Volodymyr Ivanovich, Shvets Georgii Andreevich, Vinogradova Natalia Anatolevna

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (89), 2020 года.

Бесплатный доступ

The object of research is a reinforced concrete T-beam element of prefabricated monolithic slabs with a thin-walled steel profile. Previously, the steel profile was used in the beams as a stay-in-place formwork, while the authors proposed to include it in the structural behaviour by anchoring. Four variants of T-beam elements have been tested to assess the influence of a thin-walled steel profile on the load-bearing capacity over normal sections. As a result, the strength capacity of reinforced concrete beams with anchored steel profile is 55% higher than the strength capacity of similar samples without steel profile.

Reinforced concrete, composite steel and concrete structures, experimental research, deformations, load bearing capacity

Короткий адрес:

IDR: 143172524   |   DOI: 10.18720/CUBS.89.4

Список литературы Bearing capacity of reinforced concrete T-beams with a steel profile

  • Rybakov, V.A., Kozinetc, K.G., Vatin, N.I., Velichkin, V.Z., Korsun, V.I. Lightweight steel concrete structures technology with foam fiber-cement sheets. Magazine of Civil Engineering. 2018. 82(6). Pp. 103-111. 10.18720/MCE.82.10. URL: DOI: 10.18720/MCE.82.10.URL
  • Travush, V.I., Konin, D. V, Krylov, A.S. Strength of composite steel and concrete beams of highperformance concrete. Magazine of Civil Engineering. 2018. 79(3). Pp. 36-44. 10.18720/MCE.79.4. URL: DOI: 10.18720/MCE.79.4.URL
  • Medvedev, V.N., Semeniuk, S.D. Durability and deformability of braced bending elements with external sheet reinforcement. Magazine of Civil Engineering. 2016. 63(03). Pp. 3-15. 10.5862/MCE.63.1. URL: DOI: 10.5862/MCE.63.1.URL
  • Holomek, J., Bajera, M., Vilda, M. Test Arrangement of Small-scale Shear Tests of Composite Slabs. Procedia Engineering. 2016. 161. Pp. 716-721. 10.1016/J.PROENG.2016.08.749. URL: DOI: 10.1016/J.PROENG.2016.08.749.URL
  • Derysz, J., Lewiński, P.M., Więch, P.P. New Concept of Composite Steel-reinforced Concrete Floor Slab in the Light of Computational Model and Experimental Research. Procedia Engineering. 2017. 193. Pp. 168-175. 10.1016/J.PROENG.2017.06.200. URL: DOI: 10.1016/J.PROENG.2017.06.200.URL
  • Zamaliev, F.S., Zakirov, M.A. Stress-strain state of a steel-reinforced concrete slab under longterm. Magazine of Civil Engineering. 2018. 83(7). Pp. 12-23. 10.18720/MCE.83.2. URL:
  • DOI: 10.18720/MCE.83.2.URL
  • Braila, N. V, Khazieva, K.L., Staritcyna, A.A. Results of technical inspection monitoring of the operation object. Magazine of Civil Engineering. 2017. 74(6). Pp. 70-77. 10.18720/MCE.74.7. URL:
  • DOI: 10.18720/MCE.74.7.URL
  • Rybakov, V.A., Ananeva, I.A., Rodicheva, A.O., Ogidan, O.T. Stress-strain state of composite reinforced concrete slab elements under fire activity. Magazine of Civil Engineering. 2017. 74(6). Pp. 161-174. 10.18720/MCE.74.13. URL:
  • DOI: 10.18720/MCE.74.13.URL
  • Koyankin, A.A., Mitasov, V.M. Stress-strain state of precast and cast-in place buildings. Magazine of Civil Engineering. 2017. 74(6). Pp. 175-184. 10.18720/MCE.74.14. URL:
  • DOI: 10.18720/MCE.74.14.URL
  • Korotchenko, I.A., Ivanov, E.N., Manovitsky, S.S., Borisova, V.A., Semenov, K. V, Barabanshchikov, Y.G. Deformation of concrete creep in the thermal stress state calculation of massive concrete and reinforced concrete structures. Magazine of Civil Engineering. 2017. 69(1). Pp. 56-63. 10.18720/MCE.69.5. URL:
  • DOI: 10.18720/MCE.69.5.URL
  • Krivtcov, A., Gravit, M., Zimin, S., Nedryshkin, O., Pershakov, V. Calculation of Limits of Fire Resistance for Structures with Fire Retardant Coating. MATEC Web of Conferences. 2016. 53. Pp. 01032. 10.1051/matecconf/20165301032. URL:
  • DOI: 10.1051/matecconf/20165301032.URL
  • Smirnova, O.M. Compatibility of portland cement and polycarboxylate-based superplasticizers in high-strength concrete for precast constructions. Magazine of Civil Engineering. 2016. 66(6). Pp. 12- 22. 10.5862/MCE.66.2. URL:
  • DOI: 10.5862/MCE.66.2.URL
  • Snigireva, V.A., Gorynin, G.L. The nonlinear stress-strain state of the concrete-filled steel tube structures. Magazine of Civil Engineering. 2018. 83(7). Pp. 73-82. 10.18720/MCE.83.7. URL:
  • DOI: 10.18720/MCE.83.7.URL
  • Travush, V.I., Krylov, S.B., Konin, D. V, Krylov, A.S. Ultimate state of the support zone of reinforced concrete beams. Magazine of Civil Engineering. 2018. 83(7). Pp. 165-174. 10.18720/MCE.83.15. URL:
  • DOI: 10.18720/MCE.83.15.URL
  • Alekseenko, V.N., Zhilenko, O.B., Al Ali, M. Bearing capacity of pasted anchors in the masonry walls of natural limestone. Magazine of Civil Engineering. 2018. 81(5). Pp. 52-63. 10.18720/MCE.81.6. URL:
  • DOI: 10.18720/MCE.81.6.URL
  • Lushnikova, V.Y., Tamrazyan, A.G. The effect of reinforcement corrosion on the adhesion between reinforcement and concrete. Magazine of Civil Engineering. 2018. 80(4). Pp. 128-137. 10.18720/MCE.80.12. URL:
  • DOI: 10.18720/MCE.80.12.URL
  • Ahmed, I.M., Tsavdaridis, K.D. The evolution of composite flooring systems: applications, testing, modelling and eurocode design approaches. Journal of Constructional Steel Research. 2019. 155. Pp. 286-300. 10.1016/J.JCSR.2019.01.007. URL:
  • DOI: 10.1016/J.JCSR.2019.01.007.URL
  • Szumigała, M., Polus, Ł. An Numerical Simulation of an Aluminium-concrete Beam. Procedia Engineering. 2017. 172. Pp. 1086-1092. 10.1016/J.PROENG.2017.02.167. URL:
  • DOI: 10.1016/J.PROENG.2017.02.167.URL
  • Ataei, A., Bradford, M.A., Valipour, H. Sustainable Design of Deconstructable Steel-Concrete Composite Structures. Procedia Engineering. 2016. 145. Pp. 1153-1160. 10.1016/J.PROENG.2016.04.149. URL:
  • DOI: 10.1016/J.PROENG.2016.04.149.URL
  • Gholamhoseini, A., Gilbert, R.I., Bradford, M.A., Chang, Z.T. Long-term deformation of composite concrete slabs under sustained loading. From Materials to Structures: Advancement Through Innovation - Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, ACMSM 2012. 2013. Pp. 67-72.
  • DOI: 10.1201/b15320-12
  • Gholamhoseini, A., Gilbert, R.I., Bradford, M.A. Creep and Shrinkage Effects on the Bond-Slip Characteristics and Ultimate Strength of Composite Slabs. Journal of Civil Engineering and Architecture. 2014. 82. Pp. 1085-1097.
  • DOI: 10.17265/1934-7359/2014.09.001
  • Gholamhoseini, A., Gilbert, R.I., Bradford, M. Long-term behavior of continuous composite concrete slabs with steel decking. ACI Structural Journal. 2018. 115(2). Pp. 439-449.
  • DOI: 10.14359/51701133
  • Baniya, W.J., Zaki, W., Farrag, C.M.R., Rashed, D.A. Behavior of composite pre-flat slabs in resisting punching shear forces. Alexandria Engineering Journal. 2020. 59(1). Pp. 333-347.
  • DOI: 10.1016/j.aej.2019.12.045
  • Holomek, J., Bajer, M., Vild, M. Cast Screws as Shear Anchors for Composite Slabs. Procedia Engineering. 2017. 195. Pp. 114-119.
  • DOI: 10.1016/j.proeng.2017.04.532
  • Gravit, M., Nedviga, E., Vinogradova, N., Teplova, Z. Fire resistance of prefabricated monolithic slab. MATEC Web of Conferences. 2017. 106. Pp. 02025. 10.1051/matecconf/201710602025. URL:
  • DOI: 10.1051/matecconf/201710602025.URL
Статья научная