Automated masonry method with evaluation of its productivity and quality characteristics

Автор: Grigorian E.A., Surovenko V.B., Semenova M.D., Kormalova K.D.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 3 (78), 2019 года.

Бесплатный доступ

The article presents the way of using articulated robotic manipulator with building a 3D printer for automation of brick masonry using traditional water-cement solution. The article describes in stages all the steps that need to be done with a robot manipulator in order to build a brick column, similar to the real one, without the use of hands. The column, according to preliminary data, must withstand a maximum load approximately equal to that which would withstand a column of the same material, but made by man. Later, the properties of 6 built brick columns are compared, half of which is built by a robot, and the other part - by a man. All advantages and disadvantages of the automated method of construction of stone structures are also considered. In the course of the work, such indicators as masonry time, structural strength, as well as their comparison with the indicators of structures erected by physical effort were revealed.


3d-принтер, building automation, additive technologies, small-scale models, robotic arm, 3d-printer, building process technologies, technologies of the future, masonry quality, masonry

Короткий адрес:

IDR: 143170696   |   DOI: 10.18720/CUBS.78.1

Список литературы Automated masonry method with evaluation of its productivity and quality characteristics

  • M.Teicholz. Labor Productivity Declines in the Construction Industry // Causes and Remedies. 2004. (AECbytes Viewpoint. Archived Article # 4. ed March 1, 2017)).
  • M.Teicholz. Labor-Productivity Declines in the Construction Industry // Causes and Remedies (Another Look). 2013 (AECbytes Viewpoint. Archived Article # 67. (accessed March 1, 2017))
  • K.Zavadskas. Automation and robotics in construction: International research and achievements, Automation in Constr. 2010. Vol. 19. Pp. 286-290 DOI: 10.1016/j.autcon.2009.12.011
  • Maas, F.Gassel. The influence of automation and robotics on the performance construction // Automation in Constr. 2005. Vol.14. Pp. 435-441. DOI: 10.1016/j.autcon.2004.09.010
  • Haas, M.Skibniewski, E.Budny. Robotics in civil engineering // Comput. Aided Civ. Inf. Eng. 10 (5) 1995. Pp. 371-381, DOI: 10.1111/j.1467-8667.1995tb00298.x
  • García de Soto, I.Agustí-Juan, J.Hunhevicz, S.Joss, K.Graser, G.Habert, B.T.Adey. Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall // Autom. Constr. 92. 2018. Pp. 297-311,
  • DOI: 10.1016/j.autcon2018.04.004
  • J.Skibniewski. Framework for decision-making on implementing robotics in construction // Civ. Eng. 2(2) 1988. Pp. 188-201 :2(188).
  • DOI: 10.1061/(asce)0887-3801(1988)2
  • Skibniewski, C.Hendrickson. Automation and robotics for road construction and maintenance // J. Transp. Eng. 116(3) 1990. Pp. 261-271 :3(261).
  • DOI: 10.1061/(ASCE)0733-947X(1990)116
  • Walliman, B.Baiche, R.Ogden. Thin-joint glued brickwork: Building in the British context // Constr. and Build. Materials. 22. 2008. Pp. 1081-1092
  • DOI: 10.1016/j.conbuildmat.2007.03.008
  • Galassi, M.Paradiso. BrickWORK Software-aided Analysis of Masonry Structures // IERI Procedia, 2014. Vol.7 Pp. 62-70
  • DOI: 10.1016/j.ieri.2014.08.011
  • Gei, D.Misseroni. Experimental investigation of progressive instability and collapse of notension brickwork pillars // International Journal of Solids and Structures. 2018. Vol.155. Pp. 81-88
  • DOI: 10.1016/j.ijsolstr.2018.07.010
  • Goto, Y.Ishida, N.Kyura, M.Nakamura. Forcefree control with independent compensation for industrial articulated robot Arm // IFAC Proceedings Volumes. 2005. Vol. 38, Pp. 103-108.
  • DOI: 10.3182/20050703-6-CZ-1902.01287
  • S.Kamlesh, R.Mishra. Advanced path simulation of a 5R robotic Arm for CT guided medical procedures // Materials today: Proceedings. 2018. Vol. 5, Issue 2, P.1, Pp. 6149-6156.
  • DOI: 10.1016/j.matpr.2017.12.221
  • Shah, A.B.Pandey. Concept for Automated Sorting Robotic Arm // Procedia Manufacturing. 2018. Vol. 20, Pp. 400-405
  • DOI: 10.1016/j.promfg.2018.02.058
  • E.Mohan, N.Tan, K.Tjoelsen, R.Sosa. Designing the robot inclusive space challenge // Digital Communications and Networks. 2015. Vol.1. Pp. 267-274
  • DOI: 10.1016/j.dcan.2015.09.005
  • Pslmarini, I.F.Amo, G.Bertolino, G.Dini, J.A.Erkoyncu, R.Roy, M.Farnsworth. Designing an AR interface to improve trust in Human-Robots collaboration // Procedia CIRP. 2018. Vol.70, Pp. 350-355
  • DOI: 10.1016/j.procir.2018.01.009
  • Verl, A.Valente, S.Melkote, C.Brecher, E.Ozturk, L.T.Tunc. Robots in machining // CIRP Annals, Available online 2019. In Press.
  • DOI: 10.1016/j.cirp.2019.05.009
  • Boranglu, M.Ceccarelli, A.Florin, A.Silvia, C.Giuseppe, O.Stocklosa. Open Robot Control for Services in Construction // IFAC Proceedings Volumes. 2012. Vol. 45, Issue 6 Pp. 865-870.
  • DOI: 10.3182/20120523-3-RO-2023.00341
  • Zuo, J.Gong, Y.Huang, Y.Zhan, M.Gong, L.Zhang. Experimental research on transition from scale 3D printing to full-size printing // Constr. and Build. Materials, Vol. 208 (2019) Pp. 350-360
  • DOI: 10.1016/j.conbuildmat.2019.02.171
  • Gibson, D.P.Shi. Material properties and fabrication parameters in selective laser sintering process // Rapid Prototyping J.3 (4) (1997) Pp. 129-136,
  • DOI: 10.1108/13552549710191836
  • S.Yusuf, C.Kiroglu. Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM // Procedia Manufacturing, Vol.20. (2018) Pp. 400-405
  • DOI: 10.1016/j.promfg.2018.02.058
  • Hager, A.Golonka, R.Putanowicz. 3D Printing of Building Components as the Future of Sustainable Construction // Procedia Eng., Vol 151, (2016) Pp. 292-299
  • DOI: 10.1016/j.proeng.2016.07.357
  • A.Buswell, A.Thorpe, R.C.Soar, A.G.F.Gibb. Design, data and process issues for mega-scale rapid manufacturing machines used for construction // Autom. Constr. 17 (8) (2008) Pp. 923-929,
  • DOI: 10.1016/j.autcon.2008.03.001
  • Wang, M.Sun, S.Guo. Water absorption characteristics of cement-based materials based on the chemical reaction // Constr. and Build. Materials, Vol.220 (2019) Pp. 607-614
  • DOI: 10.1016/j.conbuildmat.2019.06.064
  • Biwan, F.Winnefeld, J.Kaufmann, B.Lothenbach. Influence of magnesium-to-phosphate ratio and water-to-cement ratio on hydration and properties of magnesium potassium phosphate cements // Cement and Concrete Research, Vol.123, (2019) 105781
  • DOI: 10.1016/j.cemconres.2019.105781
  • Garcla-Lodeiro, F.Jin, Y.Meguro, H.Kinoshita, Reduction of water content in calcium aluminate cement with/out phosphate modification for alternative cementation technique // Cement and Concrete Research. Vol.109, (2018) Pp. 243-253
  • DOI: 10.1016/j.cemconres.2018.04.019
Статья научная