Аносмия при COVID-19: основные механизмы и оценка роли обонятельного пути в развитии инфекционного поражения головного мозга

Автор: Бутовт Р., Фон Бартельд К. С.

Журнал: Juvenis scientia @jscientia

Рубрика: Переводные статьи

Статья в выпуске: 5 т.7, 2021 года.

Бесплатный доступ

В последние месяцы появилась информация о том, что новый коронавирус, ставший причиной пандемии COVID-19, вызывает снижение обонятельной и вкусовой чувствительности у значительной части пациентов. При этом хемосенсорная недостаточность зачастую является самым ранним, а иногда и единственным проявлением инфекции у не имеющих других симптомов носителей вируса SARS-CoV-2. Все больший интерес в последнее время, таким образом, вызывают возможные причины ранней и специфичной хемосенсорной дисфункции при COVID-2019. В данном обзоре мы провели анализ результатов недавних исследований, показавших, что распространенность таких симптомов как нарушения обоняния и вкуса у пациентов с COVID-19 не одинакова в различных популяциях. Вероятно, это обусловлено различиями в S-белке нескольких разновидностей вируса, либо межпопуляционными отличиями человеческих белков, которые используются вирусом для проникновения в клетки, что изменяет инфекционные свойства вируса. При подготовке этого обзора мы опирались на актуальные сведения о клеточных и молекулярных механизмах, лежащих в основе индуцированной вирусом аносмии, особо акцентируя внимание на новых данных о ключевой роли поддерживающих клеток обонятельного эпителия. Мы также провели критический анализ последних данных, свидетельствующих о поражении головного мозга при COVID-19, и оценили теоретическую возможность и пути проникновения SARS-CoV-2 в мозг через обонятельный эпителий полости носа. Помимо этого, мы проанализировали перспективы использования симптомов хемосенсорной дисфункции для скрининговой экспресс-диагностики COVID-19 на ранних стадиях развития заболевания.

Еще

Аносмия, covid-19, обонятельный эпителий, sars-cov-2, ангиотензинпревращающий фермент 2, заболеваемость, диагностика, гипосмия, потеря обоняния, вкус, инфекционное поражение головного мозга

Короткий адрес: https://readera.org/14122890

IDR: 14122890   |   DOI: 10.32415/jscientia_2021_7_5_28-59

Список литературы Аносмия при COVID-19: основные механизмы и оценка роли обонятельного пути в развитии инфекционного поражения головного мозга

  • Agyeman AA, Chin KL, Landersdorfer CB, et al. Smell and Taste Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. Mayo Clin Proc. 2020;95(8):1621-1631. DOI: 10.1016/j.mayocp.2020.05.030
  • Aragão MFVV, Leal MC, Cartaxo Filho OQ, et al. Anosmia in COVID-19 Associated with Injury to the Olfactory Bulbs Evident on MRI. AJNR Am J Neuroradiol. 2020;41(9):1703-1706. DOI: 10.3174/ajnr.A6675
  • Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging. 2020;12(11):10087-10098
  • Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995-998. DOI: 10.1021/acschemneuro.0c00122
  • Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):830-833. DOI: 10.1038/s41586-020-2312-y
  • Baxter BD, Larson ED, Feinstein P, et al. Transcriptional profiling reveals TRPM5-expressing cells involved in viral infection in the olfactory epithelium. bioRxiv. 2020;2020.05.14.096016. DOI: 10.1101/2020.05.14.096016
  • Benetti E, Tita R, Spiga O, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. MedRxiv. 2020. DOI: 10.1101/2020.04.03.20047977
  • Bénézit F, Le Turnier P, Declerck C, et al. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect Dis. 2020;20(9):1014-1015. DOI: 10.1016/S1473-3099(20)30297-8
  • Bertlich M, Stihi C, Weiss BG, et al. Characteristics of impaired chemosensory function in hospitalized COVID-19 Patients. Preprint SSRN. 2020. DOI: 10.2139/ssrn.3576889
  • Bilinska K, Jakubowska P, von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 entry proteins ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020;11(11):1555-1562. DOI: 10.1021/acschemneuro.0c00210
  • Brann DH, Tsukahara T, Weinreb C, et al. Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. Sci Adv. 2020;6(31):eabc5801. DOI: 10.1126/sciadv.abc5801
  • Brann JH, Firestein SJ. A lifetime of neurogenesis in the olfactory system. Front Neurosci. 2014;8:182. DOI: 10.3389/fnins.2014.00182
  • Briguglio M, Bona A, Porta M, et al. Disentangling the Hypothesis of Host Dysosmia and SARS-CoV-2: The Bait Symptom That Hides Neglected Neurophysiological Routes. Front Physiol. 2020;11:671. DOI: 10.3389/fphys.2020.00671
  • Bryche B, Deliot ASA, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Preprint bioRxiv. 2020. DOI: 10.1101/2020.06.16.151704
  • Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200-1203. DOI: 10.1021/acschemneuro.0c00172
  • Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:11. DOI: 10.1038/s41421-020-0147-1
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan China: a descriptive study. Lancet. 2020;395(10223):507-513. DOI: 10.1016/S0140-6736(20)30211-7
  • Chen M, Shen W, Rowan NR, et al. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.08.084996
  • Cooper KW, Brann DH, Farruggia MC, et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020;107(2):219-233. DOI: 10.1016/j.neuron.2020.06.032
  • Dell'Era V, Farri F, Garzaro G, et al. Smell and taste disorders during COVID-19 outbreak: Cross-sectional study on 355 patients. Head Neck. 2020;42(7):1591-1596. DOI: 10.1002/hed.26288
  • Desforges M, Le Coupanec A, Dubeau P, et al. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses. 2019;12(1):14. DOI: 10.3390/v12010014
  • Dos Santos NPC, Khayat AS, Rodrigues JCG, et al. TMPRSS2 variants and their susceptibility to COVID-19: focus in East Asian and European populations. MedRxiv Preprint. 2020. DOI: 10.1101/2020.06.09.20126680
  • DosSantos MF, Devalle S, Aran V, et al. Neuromechanisms of SARS-CoV-2: A Review. Front Neuroanat. 2020;14:37. DOI: 10.3389/fnana.2020.00037
  • Doty RL, Mishra A. Olfaction and its alteration by nasal obstruction, rhinitis, and rhinosinusitis [published correction appears in Laryngoscope 2001 Sep;111(9):1673]. Laryngoscope. 2001;111(3):409-423.DOI: 10.1097/00005537-200103000-00008
  • Dubé M, Le Coupanec A, Wong AHM, et al. Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J Virol. 2018;92(17):e00404-18. DOI: 10.1128/JVI.00404-18
  • Durante MA, Kurtenbach S, Sargi ZB, et al. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat Neurosci. 2020;23(3):323-326. DOI: 10.1038/s41593-020-0587-9
  • Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. DOI: 10.1056/NEJMoa2020283
  • Eliezer M, Hautefort C, Hamel AL, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020;146(7):674-675. DOI: 10.1001/jamaoto.2020.0832
  • Fodoulian L, Tuberosa J, Rossier D, et al. SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. BioRxiv preprint. 2020. DOI: 10.1101/2020.03.31.013268
  • Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A. 2020;117(17):9241-9243. DOI: 10.1073/pnas.2004999117
  • Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991;5(9):1513-1523. DOI: 10.1101/gad.5.9.1513
  • Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020;58(3):299-301. DOI: 10.4193/Rhin20.114.
  • Gilani S, Roditi R, Naraghi M. COVID-19 and anosmia in Tehran, Iran. Med Hypotheses. 2020;141:109757. DOI: 10.1016/j.mehy.2020.109757
  • Grant MC, Geoghegan L, Arbyn M, et al. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS One. 2020;15(6):e0234765. DOI: 10.1371/journal.pone.0234765
  • Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell. 2020. DOI: 10.1016/j.cell.2020.06.040
  • Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-424. DOI: 10.1084/jem.20050828
  • Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. DOI: 10.1056/NEJMoa2002032
  • Gupta K, Mohanty SK, Kalra S, et al. The molecular basis of loss of smell in 2019-nCoV infected individuals. Research Square Preprint. 2020. DOI: 10.21203/rs.3.rs-19884/v1
  • Hannum ME, Ramirez VA, Lipson SJ, et al. Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19-positive patients compared to subjective methods: a systematic review and metaanalysis. MedRxiv preprint. 2020. DOI: 10.1101/2020.07.04.20145870.
  • Heydel JM, Coelho A, Thiebaud N, et al. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. Anat Rec (Hoboken). 2013;296(9):1333-1345. DOI: 10.1002/ar.22735
  • Hopkins C, Surda P, Kumar N. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology. 2020;58(3):295-298. DOI: 10.4193/Rhin20.116
  • Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020;182(2):429-446.e14. DOI: 10.1016/j.cell.2020.05.042
  • Hummel T, Whitcroft KL, Andrews P, et al. Position paper on olfactory dysfunction. Rhinol Suppl. 2017;54(26):1-30. DOI: 10.4193/Rhino16.248
  • Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of A case. Acta Neurol Taiwan. 2006;15(1):26-28.
  • Irvin JD, Viau JM. Safety profiles of the angiotensin converting enzyme inhibitors captopril and enalapril. Am J Med. 1986;81(4C):46-50. DOI: 10.1016/0002-9343(86)90945-9
  • Jeffers SA, Tusell SM, Gillim-Ross L, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;101(44):15748-15753. DOI: 10.1073/pnas.0403812101
  • Jennes L. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies. Ann N Y Acad Sci. 1987;519:165-173. DOI: 10.1111/j.1749-6632.1987.tb36295.x
  • Jia C, Roman C, Hegg CC. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: protective and proliferative role of purinergic receptor activation. Toxicol Sci. 2010;115(2):547-556.DOI: 10.1093/toxsci/kfq071
  • Jia Y, Shen G, Zhang Y, et al. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. BioRxiv preprint. 2020. DOI: 10.1101/2020.04.09.034942
  • Jiang RD, Liu MQ, Chen Y, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensinconverting enzyme 2. Cell. 2020;182(1):50-58.e8. DOI: 10.1016/j.cell.2020.05.027
  • Karimi-Galougahi M, Yousefi-Koma A, Bakhshayeshkaram M, et al. 18FDG PET/CT scan reveals hypoactive orbitofrontal cortex in anosmia of COVID-19. Acad Radiol. 2020;27(7):1042-1043. DOI: 10.1016/j.acra.2020.04.030
  • Kaye R, Chang CWD, Kazahaya K, et al. COVID-19 anosmia reporting tool: initial findings. Otolaryngol Head Neck Surg. 2020;163(1):132-134. DOI: 10.1177/0194599820922992
  • Kermen F, Midroit M, Kuczewski N, et al. Topographical representation of odor hedonics in the olfactory bulb. Nat Neurosci. 2016;19(7):876-878. DOI: 10.1038/nn.4317
  • Klingenstein M, Klingenstein S, Neckel PH, et al. Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. bioRxiv preprint. 2020. DOI: 10.1101/2020.07.15.204602
  • Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182(4):812-827.e19. DOI: 10.1016/j.cell.2020.06.043
  • Krolewski RC, Packard A, Schwob JE. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J Comp Neurol. 2013;521(4):833-859. DOI: 10.1002/cne.23204
  • Larsell O. The nervus terminalis. Ann Otol Rhinol Laryngol. 1950;59:414-438. DOI: 10.1177/000348945005900211
  • Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251-2261. DOI: 10.1007/s00405-020-05965-1
  • Lechien JR, Chiesa-Estomba CM, Hans S, et al. Loss of smell and taste in 2013 European patients with mild to moderate COVID-19. Ann Intern Med. 2020. DOI: 10.7326/M20-2428
  • Lee Y, Min P, Lee S, Kim SW. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients. J Korean Med Sci. 2020;35(18):e174. DOI: 10.3346/jkms.2020.35.e174
  • Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634-1643. DOI: 10.1038/sj.emboj.7600640
  • Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell. 2020. DOI: 10.1016/j.cell.2020.07.012
  • Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARSCoV-2 neuroinvasion from the periphery to the brain. Front Med. 2020. DOI: 10.1007/s1168
  • Liang F. Sustentacular cell enwrapment of olfactory receptor neuronal dendrites: an update. Genes. 2020;11:493. DOI: 10.3390/genes11050493
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614-628. DOI: 10.1016/j.addr.2011.11.002
  • Lovato A, Antonini A, de Filippis C. Comment on “The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis”. Otolaryngol Head Neck Surg. 2020. DOI: 10.1177/0194599820934761
  • Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan China. JAMA Neurol. 2020;77(6):1-9. DOI: 10.1001/jamaneurol.2020.1127
  • McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813-821. DOI: 10.1128/JVI.02012-06
  • Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 patients. Preprint bioRxiv. 2020. DOI: 10.1101/2020.06.04.135012.
  • Menachery VD, Yount BL Jr, Sims AC, et al. SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A. 2016;113(11):3048-3053. DOI: 10.1073/pnas.1517719113
  • Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am J Otolaryngol. 2020;41(5):102581. DOI: 10.1016/j.amjoto.2020.102581
  • Menni C, Sudre CH, Steves CJ, et al. Quantifying additional COVID-19 symptoms will save lives. Lancet. 2020;395(10241):e107-e108. DOI: 10.1016/S0140-6736(20)31281-2
  • Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020;26(7):1037-1040. DOI: 10.1038/s41591-020-0916-2
  • Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2.Int J Infect Dis. 2020;94:55-58. DOI: 10.1016/j.ijid.2020.03.062
  • Naeini AS, Karimi-Galougahi M, Raad N, et al. Paranasal sinuses computed tomography findings in anosmia of COVID-19. Am J Otolaryngol. 2020;41(6):102636. DOI: 10.1016/j.amjoto.2020.102636
  • Naik BS, Shetty N, Maben EV. Drug-induced taste disorders. Eur J Intern Med. 2010;21(3):240-243. DOI: 10.1016/j.ejim.2010.01.017
  • Nampoothiri S, Sauve S, Ternier G, et al. The hypothalamus as a hub for putative SARS-CoV-2 brain infection.bioRxiv preprint. 2020. DOI: 10.1101/2020.06.08.139329
  • Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264-7275. DOI: 10.1128/JVI.00737-08
  • Nickell MD, Breheny P, Stromberg AJ, McClintock TS. Genomics of mature and immature olfactory sensory neurons. J Comp Neurol. 2012;520(12):2608-2629. DOI: 10.1002/cne.23052
  • Norwood JN, Zhang Q, Card D, et al. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Elife. 2019;8:e44278. DOI: 10.7554/eLife.44278
  • Oelschläger HA, Buhl EH, Dann JF. Development of the nervus terminalis in mammals including toothed whales and humans. Ann N Y Acad Sci. 1987;519:447-464. DOI: 10.1111/j.1749-6632.1987.tb36316.x
  • Oliviero A, de Castro F, Coperchini F, et al. COVID-19 pulmonary and olfactory dysfunctions: Is the chemokine CXCL10 the common denominator? Neuroscientist. 2020. DOI: 10.1177/1073858420939033
  • Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. 2020;M20-3012. DOI: 10.7326/M20-3012
  • Ou J, Zhou Z, Zhang J, et al. RBD mutations from circulating SARS-CoV-2 strains enhance the structure stability and infectivity of the spike protein. bioRxiv preprint. 2020. DOI: 10.1101/2020.03.15.991844
  • Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020;43(7):1027-1031. DOI: 10.1007/s40618-020-01276-8
  • Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702. DOI: 10.1002/jmv.25915
  • Parma V, Ohla K, Veldhuizen MG, et al. More than just smell—COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. MedRxiv preprint. 2020. DOI: 10.1101/2020.05.04.20090902
  • Passarelli PC, Lopez MA, Mastandrea Bonaviri GN, et al. Taste and smell as chemosensory dysfunctions in COVID-19 infection. Am J Dent. 2020;33(3):135-137.
  • Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med. 1990;172(4):1127-1132. DOI: 10.1084/jem.172.4.1127
  • Phelan J, Deelder W, Ward D, et al. Controlling the SARS-CoV-2 outbreak, insights from large scale whole genome sequences generated across the world. Preprint bioRxiv. 2020. DOI: 10.1101/2020.04.28.066977
  • Plakhov IV, Arlund EE, Aoki C, Reiss CS. The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology. 1995;209(1):257-262. DOI: 10.1006/viro.1995.1252
  • Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient WithCoronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 2020;77(8):1028-1029. DOI: 10.1001/jamaneurol.2020.2125
  • Printza A, Constantinidis J. The role of self-reported smell and taste disorders in suspected COVID 19. Eur Arch Otorhinolaryngol. 2020;277(9):2625-2630. DOI: 10.1007/s00405-020-06069-6
  • Qiu C, Cui C, Hautefort C, et al. Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: an international multicenter study. MedRxiv preprint. 2020. DOI: 10.1101/2020.05.13.201001
  • Rockx B, Kuiken T, Herfst S, et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020;368(6494):1012-1015. DOI: 10.1126/science.abb7314
  • Rodriguez S, Cao L, Rickenbacher GT, et al. Innate immune signaling in the olfactory epithelium reduces odorant receptor levels: modeling transient smell loss in COVID-19 patients. Preprint medRxiv. 2020. DOI: 10.1101/2020.06.14.20131128
  • Sadeghipour S, Mathias RA. Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol. 2017;67:91-100. DOI: 10.1016/j.semcdb.2017.03.005
  • Sakano H. Neural map formation in the mouse olfactory system. Neuron. 2010;67(4):530-542. DOI: 10.1016/jneuron.2010.07.003
  • Saraiva LR, Ibarra-Soria X, Khan M, et al. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep. 2015;5:18178. DOI: 10.1038/srep18178
  • Sato T, Ueha R, Goto T, et al. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.14.097204.
  • Sayin I, Yazici ZM. Taste and Smell Impairment in SARS-CoV-2 Recovers Early and Spontaneously: Experimental Data Strongly Linked to Clinical Data. ACS Chem Neurosci. 2020;11(14):2031-2033. DOI: 10.1021/acschemneuro.0c00296
  • Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002;269(1):33-49. DOI: 10.1002/ar.10047
  • Schwob JE, Youngentob SL, Mezza RC. Reconstitution of the rat olfactory epithelium after methyl bromideinduced lesion. J Comp Neurol. 1995;359(1):15-37. DOI: 10.1002/cne.903590103
  • Sedaghat AR, Gengler I, Speth MM. Olfactory dysfunction: a highly prevalent symptom of COVID-19 with public health significance. Otolaryngol Head Neck Surg. 2020;163(1):12-15. DOI: 10.1177/0194599820926464
  • Serrano-Castro PJ, Estivill-Torrús G, Cabezudo-García P, et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurologia. 2020;35:245-251. DOI: 10.1016/j.nrl.2020.04.002
  • Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. DOI: 10.1038/s41586-020-2179-y
  • Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834-838. DOI: 10.1038/s41586-020-2342-5
  • Soler ZM, Patel ZM, Turner JH, Holbrook EH. A primer on viral-associated olfactory loss in the era of COVID-19. Int Forum Allergy Rhinol. 2020;10(7):814-8120. DOI: 10.1002/alr.22578
  • Strafella C, Caputo V, Termine A, et al. Analysis of ACE2 genetic variability among populations highlights a possible link with COVID19-related neurological complications. Research Square preprint. 2020. DOI: 10.21203/rs.3.rs-28871/v1
  • Streeck H. Wir haben neue Symptome entdeckt. 2020. URL: https://www.faz.net/aktuell/gesellschaft/gesundheit/coronavirus/neue-corona-symptome-entdeckt-virologe-hendrik-streeck-zum-virus-16681450html?GEPC=s3
  • Strotmann J, Breer H. Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol. 2011;136(3):357-369. DOI: 10.1007/s00418-011-0850-y
  • Sun J, Zhuang Z, Zheng J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell. 2020. DOI: 10.1016/j.cell.2020.06.010
  • Sun SH, Chen Q, Gu HJ, et al. A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe. 2020;28(1):124-133.e4. DOI: 10.1016/j.chom.2020.05.020
  • Tong JY, Wong A, Zhu D, et al. The prevalence of olfactory and gustatory dysfunction in COVID-19patients: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2020;163(1):3-11. DOI: 10.1177/0194599820926473
  • Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, et al. Proinflammatory Cytokines in the Olfactory Mucosa Result in COVID-19 Induced Anosmia. ACS Chem Neurosci. 2020;11(13):1909-1913. DOI: 10.1021/acschemneuro.0c00249
  • Tseng CT, Huang C, Newman P, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J Virol. 2007;81(3):1162-1173. DOI: 10.1128/JVI.01702-06
  • Tudrej B, Sebo P, Lourdoaux J, et al. Self-reported loss of smell and taste in SARS-CoV-2 patients: primary care data to guide future early detection strategies. Research Square preprint. 2020. DOI: 10.21203/rs.3.rs-28701/v1
  • Ueha R, Kondo K, Kagoya R, et al. Understanding olfactory dysfunction in COVID-19: Expression of ACE2, TMPRSS2 and Furin in the nose and olfactory bulb in human and mice. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.15.097352
  • van Dorp L, Richard D, Tan CCS, et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Preprint bioRxiv. 2020. DOI: 10.1101/2020.05.21.108506
  • Vaira LA, Deiana G, Fois AG, et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: singlecenterexperience on 72 cases. Head Neck. 2020;42(6):1252-1258. DOI: 10.1002/hed.26204
  • Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020;130(7):1787. DOI: 10.1002/lary.28692
  • Vaira LA, Salzano G, Fois AG, et al. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol. 2020. DOI: 10.1002/alr.22593
  • van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 2015;235(2):277-287. DOI: 10.1002/path.4461
  • Vedin V, Slotnick B, Berghard A. Zonal ablation of the olfactory sensory neuroepithelium of the mouse: effects on odorant detection. Eur J Neurosci. 2004;20(7):1858-1864. DOI: 10.1111/j.1460-9568.2004.03634.x
  • Villar PS, Delgado R, Vergara C, et al. Energy Requirements of Odor Transduction in the Chemosensory Cilia of Olfactory Sensory Neurons Rely on Oxidative Phosphorylation and Glycolytic Processing of Extracellular Glucose. J Neurosci. 2017;37(23):5736-5743. DOI: 10.1523/JNEUROSCI.2640-16.2017
  • von Bartheld CS, Hagen MM, Butowt R. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. MedRxiv preprint. 2020. DOI: 10.1101/2020.06.15.20132134
  • Walsh-Messinger J, Sahar K, Manis H, et al. Standardized testing demonstrates altered odor detection sensitivity and hedonics in asymptomatic college students as SARS-CoV-2 emerged locally. Preprint medRxiv. 2020. DOI: 10.1101/2020.06.17.20106302
  • Wang K, Chen W, Zhou YS, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Preprint bioRxiv. 2020. DOI: 10.1101/2020.03.14.988345.
  • Wang L, Shen Y, Li M, et al. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Neurol. 2020. DOI: 10.1007/s00415-020-09974-2
  • Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843-1844. DOI: 10.1001/jama.2020.3786
  • Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan China. Clin Infect Dis. 2020;71(15):769-777. DOI: 10.1093/cid/ciaa272
  • Wang Z, Zhou J, Marshall B, et al. SARS-CoV-2 receptor ACE2 is enriched in a subpopulation of mouse tongue epithelial cells in nongustatory papillae but not in taste buds or embryonic oral epithelium. ACS Pharmacol Transl Sci. 2020;3(4):749-758. DOI: 10.1021/acsptsci.0c00062
  • Williams FMK, Freidin MB, Mangino M, et al. Self-Reported Symptoms of COVID-19, Including Symptoms Most Predictive of SARS-CoV-2 Infection, Are Heritable. Twin Res Hum Genet. 2020;23(6):316-321. DOI: 10.1017/thg.2020.85.
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-269. DOI: 10.1038/s41586-020-2008-3
  • Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18-22. DOI: 10.1016/j.bbi.2020.03.031
  • Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. DOI: 10.1038/s41368-020-0074-x
  • Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, et al. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. 2020;20(9):1015-1016. DOI: 10.1016/S1473-3099(20)30293-0
  • Yan CH, Faraji F, Prajapati DP, et al. Self-reported olfactory loss associates with outpatient clinical course in Covid-19. Int Forum Allergy Rhinol. 2020;10:821-831. DOI: 10.1002/alr.22592
  • Yang XH, Deng W, Tong Z, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. 2007;57(5):450-459.
  • Zhang L, Jackson CB, Mou H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv. 2020. DOI: 10.1101/2020.06.12.148726
  • Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;267(8):2179-2184.DOI: 10.1007/s00415-020-09929-7
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181(5):1016-1035.e19. DOI: 10.1016/j.cell.2020.04.035
  • Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177-1179. DOI: 10.1056/NEJMc2001737
  • Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020;77(8):1018-1027. DOI: 10.1001/jamaneurol.2020.2065.
Еще
Статья обзорная