Achievements of nanoindustry: projects, applications, economic effect and social significance

Автор: Smirnova L.N, Rucińska T., Zvezdov A.I.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: A review of the achievements of nanotechnology

Статья в выпуске: 1 Vol.12, 2020 года.

Бесплатный доступ

In the paper the review of achievements of nanoindustry is carried out: the use of nanosilica as an additive that improves the fire and thermal resistance of cementitious composites; a welding filler reinforced with nanoparticles for aerospace structures; smart, mobile and autonomous station for collecting and accumulating solar and electric energy; materials authentication with the use of nuclear quadrupole resonance spectroscopy, etc. Areas of application, economic effect and social significance of projects developed in different countries are given. For example, researchers and developers at Ben-Gurion University in the Negev, Israel and Ulyanovsk state technical University, Russia have jointly created a device in the field of alternative energy that allows you to collect and store solar and electric energy for later use. The device has a unique smart system of protection against voltage interruptions and overheating due to the controller devices and software. Also, the device has a number of innovative engineering solutions to reduce the temperature of the heated elements of the device, increase protection from dust and moisture. All this together is a unique solution different from the existing solutions capable of generating and storing solar energy for a long time (up to 10 years).


Achievements of nanotechnology, nanosilica, nanoparticles, mobile and autonomous station

Короткий адрес:

IDR: 142227435   |   DOI: 10.15828/2075-8545-2020-12-1-41-45

Список литературы Achievements of nanoindustry: projects, applications, economic effect and social significance

  • Sikora P., Abd Elrahman M, Stephan D. The influence of nanomaterials on the thermal resistance of cement-based composites – a review. Nanomaterials. 2018, Vol. 8, no. 7, pp. 465. DOI: 10.3390/nano8070465.
  • Skoczylas K., Rucińska T. Strength and durability of cement mortars containing nanosilica and waste glass fine aggregate. Cement Wapno Beton. 2018, Vol. 3, pp. 206–215.
  • Skoczylas K., Rucińska T. The effects of waste glass cullets and nanosilica on the long-term properties of cement mortars. E3S Web of Conferences. 2018, Vol. 49, pp. 00102. DOI: 10.1051/e3sconf/20184900102.
  • Sikora P., Horszczaruk E., Skoczylas K., Rucinska T. Thermal properties of cement mortars containing waste glass aggregate and nanosilica. Procedia Engineering. 2017, Vol. 196, pp. 159–166. DOI: 10.1016/j.proeng.2017.07.186.
  • Kumar R., Singh S., Singh L.P. Studies on enhanced thermally stable high strength concrete incorporating silica nanoparticles. Construction and Building Materials. 2017, Vol. 153, pp. 506–513. DOI: 10.1016/j.conbuildmat.2017.07.057.
  • Yan L., Xing Y., Zhang, J., Li J. High-temperature mechanical properties and microscopic analysis of nano-silica steel fibre RC. Magazine of Concrete Research. 2013, Vol. 65, pp. 1472–1479. DOI: 10.1680/macr.13.00143.
  • El-Gamal S.M.A.; Abo-El-Enein S.A., El-Hosiny F.I., Amin M.S., Ramadan, M. Thermal resistance, microstructure and mechanical properties of type I Portland cement pastes containing low-cost nanoparticles. Journal of Thermal Analysis and Calorimetry. 2018, Vol. 131, no. 2, pp. 949–968. DOI: 10.1007/s10973-017-6629-1.
  • B. Coppola B, Di Maio L., Scarfato P., Incarnato L. Use of polypropylene fibers coated with nano-silica particles into a cementitious mortar. AIP Conference Proceedings. 2015, Vol. 1695, pp. 020056. DOI: 10.1063/1.4937334.
  • Sikora P., Abd Elrahman M., Chung S.-Y., Cendrowski K., Mijowska E., Stephan D. Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature. 2019, Vol. 95, pp. 193–204. DOI: 10.1016/j.cemconcomp.2018.11.006.
  • Katarzyna S., Rucińska T. The effects of low curing temperature on the properties of cement mortars containing nanosilica. Nanotechnologies in Construction. 2019, Vol. 11, no. 5, pp. 536–544. DOI: 10.15828/2075- 8545-2019-11-5-536-544.
  • Suarez, O.M., Vazquez, J., & Reyes-Russi, L. (2009). Synthesis and Characterization of Mechanically Alloyed Al/AlxMg1-xB2 Composites. Science and Engineering of Composite Materials, 16(4), pp. 267–276.
  • Corchado, M., Reyes, F., & Suarez, O.M. (2014) Effects of AlB2 Particles and Zinc on the Absorbed Impact Energy of Gravity Cast Aluminum Matrix Composites. JOM, 66(6), pp. 926–934.
  • US Patent 8,820,390 B2: “Methods and Compositions for Boride Distribution in Metal Matrix Composite”, Inventors: A.Cintron-Aponte, J.R. Vazquez Gomez, O.V. Suarez, S.R. Pedraza-Torres. Sept. 2014.
  • Florian-Algarin D., Ramos-Morales A., Marrero-Garcia M. & Suarez O.M. (2018). Study of Aluminum Wires Treated with MoB2 Nanoparticles. Journal of Composites Science, 2(3).
  • Florian-Algarin D., Marrero R., Li X., Choi H. & Suarez O.M. (2018). Strengthening of Aluminum Wires Treated with A2O6 / Alumina Nanocomposites. Materials, 11 (3).
  • Malkin P., Shurupov A. N., Zaitsev M. A., Eschenko K. E. Smart, mobile and Autonomous station for collection and accumulation of solar and electric energy, patent application 495035465, – 2019.
  • Chen C., Zhang F., Barras J., Althoefer K., Bhunia S., Mandal S. Authentication of medicines using nuclear quadrupole resonance spectroscopy, Trans. Computational Biology&Bioinformatics, Vol. 13:3, pp. 417–430, 2016.
  • Chen C., Zhang F., Bhunia S., Mandal S. Broadband Quantitative NQR for Authentication of vitamins and Dietary Supplements, Journal of Magnetic Resonance, Vol. 278, pp. 67–79, 2017.
Статья научная