Ab initio studies of hydrogen physisorption on clear and Li-doped carbon nanotubes

Бесплатный доступ

The hydrogen adsorption on internal and external surfaces of clear and Li-doped carbon nanotubes of different radii are investigated to assess the effects of concavity and doping on hydrogen uptake and binding energy. We make density functional calculations with the exchange-correlation functionals PBE and CA. Modeling of H2 adsorption on clear carbon tubes shows that only in case of internal sorption on narrow (5,5) nanotube energy of adsorption fall within the desirable range of 300-400 meV per H2 molecule. But in this case hydrogen uptake is too low and constitutes about 1,6 wt %. Doping with Li atom increases the adsorption energy of hydrogen molecule by 30-100 meV and in case of external sorption this energy enlarges several times. Nevertheless, the optimal range of binding energy can be achieved only in case of hydrogen adsorption inside quite narrow (5,5) and (7,7) Li-doped nanotubes.

Еще

Carbon nanotubes, lithium sorption, hydrogen adsorption, first-principles calculations, density functional theory

Короткий адрес: https://sciup.org/147158941

IDR: 147158941   |   DOI: 10.14529/mmph170208

Список литературы Ab initio studies of hydrogen physisorption on clear and Li-doped carbon nanotubes

  • Dutta S. A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry, 2014, Vol. 20, no. 4, pp. 1148-1156 DOI: 10.1016/j.jiec.2013.07.037
  • Sakintuna B., Yürüm Y. Templated porous carbons: a review article. Industrial & engineering chemistry research, 2005, Vol. 44, no. 9, pp. 2893-2902 DOI: 10.1021/ie049080w
  • Oriňáková R, Oriňák A. Recent applications of carbon nanotubes in hydrogen production and storage. Fuel, 2011, Vol. 90, no. 11, pp. 3123-3140 DOI: 10.1016/j.fuel.2011.06.051
  • Kajiura H., Tsutsui S., Kadono K., Kakuta M., Ata M., Murakami Y. Hydrogen storage capacity of commercially available carbon materials at room temperature. Applied physics letters, 2003, Vol. 82, no. 7, pp. 1105-1107 DOI: 10.1063/1.1555262
  • Ansón A., Callejas M.A., Benito A.M., Maser W.K., Izquierdo M.T., Rubio B., Jagiello J., Thommes M., Parra J.B., Martı́nez M.T. Hydrogen adsorption studies on single wall Carbon nanotubes. Carbon, 2004, Vol. 42, no. 7, pp. 1243-1248 DOI: 10.1016/j.carbon.2004.01.038
  • Hoang T.K.A., Antonelli D.M. Exploiting the Kubas interaction in the design of hydrogen storage materials. Advanced Materials, 2009, Vol. 21, no. 18, pp. 1787-1800 DOI: 10.1002/adma.200802832
  • Pumera M. Graphene-based nanomaterials for energy storage. Energy & Environmental Science, 2011, Vol. 4, no. 3, pp. 668-674 DOI: 10.1039/C0EE00295J
  • Sun Q., Jena P., Wang Q., Marquez M. First-principles study of hydrogen storage on Li12C60. Journal of the American Chemical Society, 2006, Vol. 128, no. 30, pp. 9741-9745 DOI: 10.1021/ja058330c
  • Liu M., Kutana A., Liu Y., Yakobson B.I. First-principles studies of Li nucleation on graphene. The journal of physical chemistry letters, 2014, Vol. 5, no. 7, pp. 1225-1229 DOI: 10.1021/jz500199d
  • Sozykin S.A., Beskachko V.P. Structure of endohedral complexes of carbon nanotubes encapsulated with lithium and sodium. Molecular Physics, 2013, Vol. 111, no. 7, pp. 930-938 DOI: 10.1080/00268976.2012.760049
  • Sozykin S.A., Beskachko V.P., Vyatkin G.P. The structure of carbon nanotube exohedral complexes with lithium in a wide range of concentrations. Materials Science Forum, 2016, Vol. 870, pp. 135-140 DOI: 10.4028/www.scientific.net/MSF.870.135
  • Soler J.M., Artacho E., Gale J.D., García A., Junquera J. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 2002, Vol. 14, no. 11, pp. 2745 DOI: 10.1088/0953-8984/14/11/302
  • Klimeš J., Michaelides A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. The Journal of chemical physics, 2012, Vol. 137, no. 12, pp. 120901 DOI: 10.1063/1.4754130
  • Li J., Furuta T., Goto H., Ohashi T., Fujiwara Y., Yip S. Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. The Journal of chemical physics, 2003, Vol. 119, no. 4, pp. 2376-2385 DOI: 10.1063/1.1582831
  • Kostenetskiy P.S., Safonov A.Y. SUSU Supercomputer Resources. Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT 2016). Arkhangelsk, Russia, March, 2016, Vol. 1576, pp. 561-573. (in Russ.).
Еще
Статья научная