A question of ahlfors

Бесплатный доступ

In 1963, Ahlfors posed in [1] (and repeated in his book [2]) the following question which gave rise to various investigations of quasiconformal extendibility of univalent functions. Question. Let ?? be a conformal map of the disk (or halfplane) onto a domain with quasiconformal boundary (quasicircle). How can this map be characterized? He conjectured that the characterization should be in analytic properties of the logarithmic derivative log ??? = ????/???, and indeed, many results on quasiconformal extensions of holomorphic maps have been established using ????/??? and other invariants (see, e.g., the survey [9] and the references there). This question relates to another still not solved problem in geometric complex analysis: To what extent does the Riemann mapping function ?? of a Jordan domain ?? ? ??C determine the geometric and conformal invariants (characteristics) of complementary domain ??* = ??C ? ??? The purpose of this paper is to provide a qualitative answer to these questions, which discovers how the inner features of biholomorphy determine the admissible bounds for quasiconformal dilatations and determine the Kobayashi distance for the corresponding points in the universal Teichmuller space.

Еще

Grunsky inequalities, beltrami coefficient, universal teichmuller space, teichmuller metric, kobayashi metric, schwarzian derivative, fredholm eigenvalues

Короткий адрес: https://sciup.org/14968755

IDR: 14968755

Список литературы A question of ahlfors

  • Ahlfors L. Remarks on the Neumann -Poincare integral equation. Pacific J. Math., 1952, vol. 2, pp. 271-280.
  • Ahlfors L.V. Lectures on Quasiconformal Mappings. Princеton, Van Nostrand, 1966. 162 p.
  • Earlе C.J., Kra I., Krushkal S.L. Holomorphic motions and Teichmueller spaces. Trans. Amer. Math. Soc., 1994, vol. 944, pp. 927-948.
  • Gardinеr F.P., Lakic N. Quasiconformal Teichmueller Theory. Providеncе, Amer. Math. Soc., 2000. 372 p.
  • Grunsky H. Koeffizientenbedingungen fuer schlicht abbildende meromorphe Funktionen. Math. Z., 1939, vol. 45, pp. 29-61.
  • Krushkal S.L. Grunsky coefficient inequalities, Caratheodory metric and extremal quasiconformal mappings. Comment. Math. Helv., 1989, vol. 64, pp. 650-660.
  • Krushkal S.L. Quasiconformal extensions and reflections, Ch. 11. Handbook of Complex Analysis: Geometric Function Theory, Amstеrdam, Elsevier Science, 2005, vol. II, pp. 507-553.
  • Krushkal S.L. Strengthened Moser's conjecture, geometry of Grunsky inequalities and Fredholm eigenvalues. Central European J. Math., 2007, vol. 5, no. 3, pp. 551-580.
  • Krushkal S.L. Generalized Grunsky coefficient inequalities and quasiconformal deformations. Uzbek Math. J., 2014, no. 1, to appear.
  • Krushkal S.L. Ahlfors' question and beyond. Annals Univ. Bucharest, 2014, vol. 4 (LXIII), no. 1, to appear.
  • Kruschkal S.L., Kuehnau R. Quasikonforme Abbildungen -neue Methoden und Anwendungen. Lеipzig, Teubner, 1983. 172 p.
  • Kuehnau R. Verzerrungssaetze und Koeffizientenbedingungen vom Grunskyschen Typ fuer quasikonforme Abbildungen. Math. Nachr., 1971, vol. 48, pp. 77-105.
  • Kuehnau R. Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grunskysche Koeffizientenbedingungen. Ann. Acad. Sci. Fenn. Ser. A.I. Math., 1982, vol. 7, pp. 383-391.
  • Kuehnau R. Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend fuer ??-quasikonforme Fortsetzbarkeit?. Comment. Math. Helv., 1986, vol. 61, pp. 290-307.
  • Kuehnau R. Moeglichst konforme Spiegelung an einer Jordankurve. Jber. Deutsch. Math. Verein., 1988, vol. 90, pp. 90-109.
  • Lеhto O. An extension theorem for quasiconformal mappings. Proc. London Math. Soc., 1965, issue 1, vol. s3-14A, pp. 187-190.
  • Pommеrеnkе C. Univalent Functions. Goettingеn, Vandenhoeck & Ruprecht, 1975. 374 p.
  • Schiffеr M. Fredholm eigenvalues and Grunsky matrices. Ann. Polon. Math., 1981, vol. 39, pp. 149-164.
Еще
Статья научная